
Demo: Policy-based Discovery and Patching of
Logic Bugs in Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay Celik, and Dongyan Xu
Purdue University

{kim2956, mozmen, antoniob, zcelik, dxu}@purdue.edu
Video 1: https://youtu.be/nhmKE03-bnk Video 2: https://youtu.be/gI2BPWIkYTs

This demo is based on PGFUZZ [1], a policy-guided
fuzzer that discovers logic bugs in a robotic vehicle (RV), and
PGPATCH [2], a policy-guided logic bug patching for the RV.
Logic bugs cause deviations in the RVs’ behavior from the
developer’s expectations but do not cause the program to stop
execution. Discovering and patching logic bugs is challenging
as there is no (i) clear definition of an RV’s “correct behavior”
and (ii) methodology to find and fix them.
Discovering Logic Bugs. We address these challenges with
PGFUZZ. It (1) takes, as input, a policy (expressed with
temporal logic) that describes the RV’s expected behaviors,
(2) finds inputs related to the policy via static and dynamic
analysis, and (3) mutates the identified inputs based on distance
metrics measuring “how close” the RV’s state is to a violation.

For instance, ArduPilot documentation states that the fol-
lowing two conditions must hold to deploy a parachute.
C1: the vehicle must not be in the FLIP or ACRO flight
modes, and C2: the barometer must show that the vehicle
is not climbing. Based on these requirements, we express a
policy in temporal logic: □{(Parachute = on)}→{(Modet ̸=
FLIP/ACRO) ∧ (ALTt ≤ ALTt−1)} where t and ALT represent
time and altitude, □ denotes “always”, and ∧ represents “and”.

PGFUZZ first discovers that flight mode, throttle, and
parachute inputs are related to the parachute policy via a
combination of static and dynamic analysis. PGFUZZ then
mutates the inputs based on propositional and global distances
to violate the parachute policy. Particularly, when the global
distance is a negative value, the RV violates the policy. As
shown in Figure 1, the global distance becomes negative when
the propositional distances are positive. Hence, PGFUZZ aims
to maximize the propositional distances (P1 − P3). As a result,
PGFUZZ discovers that ArduPilot improperly checks the two
requirements (C1 and C2). The policy violation causes the RV
to deploy the parachute when its flight mode is ACRO/FLIP,
making the RV crash on the ground (Figure 2a).

We ran PGFUZZ for two days for each RV control program
(ArduPilot, PX4, and Paparazzi) to evaluate them against 56
policies. PGFUZZ discovered 156 previously unknown bugs.
Fixing Logic bugs. The root cause of the parachute policy
violation is that the RV does not check the preconditions
specified in the policy. This bug can be fixed by inserting
an “if statement” using the policy as a guide (Listing 1).
PGPATCH (1) takes, as input, an existing policy that was
used to discover the logic bug through PGFUZZ and bug-
triggering inputs that PGFUZZ finds, (2) maps the policy’s

P1 =
1 if Chutet = on

-1 if Chutet ≠ on
P2 =

1 if Modet = FLIP/ACRO

-1 if Modet ≠ FLIP/ACRO

P3 =
𝐴𝐿𝑇𝑡 − 𝐴𝐿𝑇𝑡−1

𝐴𝐿𝑇𝑡

G = -1[min{P1, max(P2, P3)}]

Fig. 1: The propositions (P1-P3) and the global distance (G).

Increasing

its altitude

Result of the prohibited

parachute usages: Crashing

ACRO/FLIP

modes

Measured flight path

Reference flight path

GPS signals

are blocked

Prohibited parachute usages

(a) Parachute operations.

Increasing

its altitude

Result of the prohibited

parachute usages: Crashing

ACRO/FLIP

modes

Measured flight path

Reference flight path

GPS signals

are blocked

Prohibited parachute usages

(b) GPS fail-safe.
Fig. 2: Illustration of two logic bugs discovered by PGFUZZ.
1 void Copter::parachute_manual_release() {
2 if (control_mode != Mode::Number::ACRO
3 && control_mode != Mode::Number::FLIP)
4 parachute_release();

Listing 1: A patch (at lines 2 and 3) for the parachute bug.

terms to variables/functions in source code via static and
dynamic analysis, (3) infers a patch location from the policy
and the logic bug’s symptom, (4) synthesizes a patch code
from the policy, and (5) verifies the correctness of the patch
on an RV simulator. We collected bugs from three popular RV
software and found that PGPATCH correctly fixes 258 out of
297 bugs (86.9%).
Demonstration Plan. We provide videos to demonstrate (1)
two logic bugs discovered by PGFUZZ and (2) the effect
of fixing those bugs through PGPATCH. The first bug is
the parachute policy example detailed before. The second
shows that the RV fails to trigger a GPS fail-safe under
changed environmental conditions, which causes the RV to
float unpredictably (Figure 2b). Our project website includes
(1) details of the discovered 156 logic bugs and (2) previews
of the demo videos: https://github.com/purseclab/PGFUZZ.

ACKNOWLEDGMENT

This work was supported in part by ONR under Grants
N00014-20-1-2128 and N00014-17-1-2045. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR.

REFERENCES

[1] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “PGFUZZ:
Policy-Guided Fuzzing for Robotic Vehicles,” in Network and Distributed
System Security Symposium (NDSS), 2021.

[2] H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, “PGPATCH:
Policy-Guided Logic Bug Patching for Robotic Vehicles,” in IEEE
Symposium on Security and Privacy (S&P), 2022.

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2022
24 April 2022, San Diego, CA, USA
ISBN 1-891562-75-4
https://dx.doi.org/10.14722/autosec.2022.23029
www.ndss-symposium.org

https://youtu.be/nhmKE03-bnk
https://youtu.be/gI2BPWIkYTs
https://github.com/purseclab/PGFUZZ

	References

