
Hyungsub Kim

Purdue University

CS 490 Software Security

November 16, 2023

Defeating Logic bugs in Robotic Vehicles

2

• A PhD candidate in Purdue CS
• Joined in 2018

• Working on how to apply static and dynamic analysis to

robotic vehicle security

• Published papers into security conferences (S&P, USENIX

Security, NDSS)

About Me1)

Details of research topics:
1) Find bugs (fuzzing)
2) Automatically patch the bugs
3) Verify the fixed bugs

1) https://kimhyungsub.github.io

https://kimhyungsub.github.io/

3

• Vehicles that move autonomously on the ground, in the
air, on the sea, under the sea, or in space

What are Robotic Vehicles (RVs)?

4

• Physical space
• Attitude, altitude, speed, etc.

• Cyber space
• Measuring the RV’s current states
• Adjusting actuators to reach target physical states

Workflow of Robotic Vehicles (RVs)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical

space Sensor data

gathering

Commands

to actuators

Control

algorithm

Decreasing motors’

speed to lower altitude

User

commands

Environmental

conditions

For control

algorithm

Configuration

parameters

Three types

of inputs

Challenge 1: High-

dimensional input
spaces of RVs

1

2

3

(1) Environmental condition

Losing GPS signals in an

urbanized area(3) User command
Triggering ORBIT flight mode

(2) Configuration parameter
COM_POS_FS_DELAY = a

negative value (e.g., -1)

What are Logic Bugs?

1) A policy described in PX41) documentation:
• “When time exceeds COM_POS_FS_DELAY seconds after GPS loss is detected, the

GPS fail-safe must be triggered”

2) Yet, PX4 fails to trigger the GPS fail-safe under specific physical conditions.

Challenge 2: Defining
correct behavior of RVs

1) PX4: A popular open-source RV control software

6

- 98.2% of them (1,234/1,257) are logic bugs.

- 1.8% of them (23/1,257) are memory corruption bugs.

- Attackers can exploit logic bugs.

Analysis of existing bugs in
popular RV control software

How Common are Logic Bugs?

7

• Boeing-737 Max airplanes
• Crashed due to a design flaw
• Lowered its altitude based on only one broken sensor

Logic Bug in Real World

https://www.dailymail.co.uk/news/article-7056177/US-investigators-believe-bird-strike-factor-

Ethiopian-Airlines-Boeing-737-Max-8-crash.html

Incorrectly measured

sensor values

How can we find such a critical bug in flight control software? Um… fuzzing?

• Interplay between cyber and physical space creates challenges.

Overview of My Research

Cyber

space

Physical

space
Discovering

logic bugs

[NDSS’21]

Logic bugs

Patching

 logic bugs

[S&P’22]

Testing

 patches

[USENIX’23]

Challenge 1: High-dimensional
input spaces of RVs

Challenge 2: Defining
correct behavior

Discovering Logic Bugs in RVs

Cyber

space

Physical

space

Logic bugs

Patching

 logic bugs

[S&P’22]

Testing

 patches

[USENIX’23]

“PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay Celik, Dongyan Xu, NDSS 2021.

Discovering

logic bugs

[NDSS’21]

10

Limitations of Previous Fuzzers

1) Can existing fuzzers discover logic bugs?

2) To detect logic bugs, we need to tackle two challenges (C)
• (C1) Know the RV’s correct behaviors
• (C2) Reduce high-dimensional input spaces

What about traditional fuzzers
(AFL, libFuzzer)?

• Mutation: Code coverage
• Bug oracle: Memory access violation

No

Q: How can we formally define the

correct behavior of RVs?

A: Creating MTL1) formulas from documentation

and comments that describe expected

behavior of RVs

1) MTL: Metric Temporal Logic

12

A vehicle must not deploy a parachute when the vehicle is:
1) In FLIP or ACRO flight modes
2) Climbing

Defining MTL Formulas

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Never

or
time T time T-1

The formula is created in the form of Metric temporal logic (MTL).

Documents

Extract MTL formulas

and

Q: How can we reduce the high-

dimensional input spaces of RVs?

A: Only testing inputs relevant to MTL formulas

MTL formula Physical
states

Inputs

Mapping

Mapping

Altitude TemperatureAltitude

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

14

• Static analysis to identify which physical states are
affected by each configuration parameter

Mapping Config. Parameters to Physical States

configuration

parameter

①

②

③

<A list of physical states>

Altitude

Roll

Pitch

Yaw

…

Physical
states

Inputs
Mapping

Altitude Temperature

15

• How to map environmental conditions and user commands to
each term from source code?

Mapping Other Types of Inputs to Physical States

Simulator1) Change motors’

speed

2) Log changed

physical states

<Changed physical states

according to motors’ speed>

- Heading

- Throttle

- Altitude

- Climb

Use an RV simulator!

Physical
states

Inputs
Mapping

Altitude Motors’ speed

16

PGFuzz: Temporal Logic-Guided Fuzzing for RVs

• Logic bug-finding tool

Creating

MTL formulas1)

Defining correct

behaviors of RVs

Reducing

Fuzzing

space

Building

distance

metrics

Mutating

inputs

Discover logic bugs

Only mutate inputs

related to the formulas

1) MTL: Metric Temporal Logic

- Behavior-aware bug oracle

- Formula-guided mutation

17

• Propositional distance
• Goal: efficiently mutating inputs
• Quantifies how close a proposition to the policy violation

Two types of distances to mutate inputs
Building distance

metrics (1/6)

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Positive value:

 If the proposition is true

Negative value:

 If the proposition is false

If the term is numeric, we

use normalized difference.

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO
P3 =

ALTt - ALTt-1

ALTt

18

• Global distance
• Goal: detecting a policy violation

Two types of distances to mutate inputs
Building distance

metrics (2/6)

Positive value if there is no policy violation

Negative value if the RV violates the policy

-1 X [Min{P1, Max(P2, P3)}]

19

Working example (time T = 1)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1

2

3

4

: RV’s current states at time T : Calculated distances at time T

Randomly select an

input and assign a

random value to the

selected input

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (3/6)

Motor speed =

1,8001)

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

20

Working example (time T = 2)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1

3

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (4/6)

1) We log (motor, 1,800)

because the input

increases P3.

2) PGFUZZ selects an

input and assign a

random value to the

selected input

3) When the selected input increased a

distance before, we reuse the input and

value pair (motor, 1,800)

Motor speed =

1,8001)

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

21

Working example (time T = 3)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed =

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (5/6)

PGFUZZ selects an input

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

22

Working example (time T = 4)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed =

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4 on false 112 1 -1 0.02 -0.02

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (6/6)

Policy violation!

Vehicle must not

increase its altitude

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

23

• RV control software
• ArduPilot, PX4, and Paparazzi

Evaluation

• 56 extracted policies
• Fuzzing 48 hours per each control software
• Violating 14 policies in the three-control software

• Found 156 bugs

24

Takeaways from PGFuzz

• A new fuzzing approach to find logic bugs
• Behavior-aware bug oracle

• Leverage MTL formulas

• Customized program analysis
• Mapping a formula to inputs

• Discovering subtle logic bugs

Challenge 1: High-dimensional

input spaces of RVs

Challenge 2: Defining

correct behavior

Fixing Logic Bugs in RVs

Cyber

space

Physical

space

Logic bugs

Testing

 patches

[USENIX’23]

Discovering

logic bugs

[NDSS’21]

“PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, Dongyan Xu, S&P 2022.

Patching

 logic bugs

[S&P’22]

26

Motivation of PGPatch

Sailboat formula: {(armed = false)} ˄ {(SAIL_ENABLE = True)

^ (WNDVN_TYPE = False) → (pre_arm_checks = error)}

27

• Aim to determine
• How efficient PGPatch is in patching logic bugs compared to

manual patching

User Study

• Method
• Recruit 6 RV developers and 12 experienced RV users

• 1 subject was an official ArduPilot developer

• Ask participants to create:
• 5 patches using PGPatch
• 5 corresponding source-level patches

28

• Correctness
• 2 (editing source code) vs. 4.6 (fixing bugs through PGPatch)

• Spent time
• 31 mins (editing source code) vs. 2.6 mins (fixing bugs through PGPatch)

User Study

2

4.6

0
1
2
3
4
5

Editing
source code

Fixing bugs by
using PGPatch

formulas

#
 o

f
c
o
rr

e
c
t

a
n
s
w

e
rs

31

2.6
0

10

20

30

40

Editing
source code

Fixing bugs by
using PGPatch

formulas

S
p
e
n
t

ti
m

e
(m

in
u
te

s
)

29

Takeaways from PGPatch

• A new approach to fix logic bugs
• Reuse existing MTL formulas

• Less error-prone compared to
manually patching bugs

• Proven by the user study

Challenge 1: High-dimensional

input spaces of RVs

Challenge 2: Defining

correct behavior

Testing Correctness of Patches

Cyber

space

Physical

space

Logic bugs

Patching

 logic bugs

[S&P’22]

Discovering

logic bugs

[NDSS’21]

“PatchVerif: Discovering Faulty Patches in Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, Dongyan Xu, USENIX Security 2023.

Testing

 patches

[USENIX’23]

31

• Patches unintentionally breaking the software

functionality

• Mainly three different types of faulty patches:

What are Faulty Patches?
Background (2/2)

1) Partially fixing a buggy behavior

2) Fixing an incorrect behavior but breaking

another correct behavior

3) Adding a new feature but introducing a bug

Q: Why are faulty patches important in

Robotic Vehicles (RVs)?

33

• Writing patches for RV control software is error prone1)

• Developers reverted or fixed 345 faulty patches in ArduPilot

and PX4 in the past 5 years

• Faulty patches lead to unwanted physical behavior
• Mission failure

• Unstable attitude/position control

• Crashing on the ground

Motivation

1) Hyungsub Kim et al., “PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles”, S&P 2022.

Q: Why is creating patches for RV

control software challenging?

A: Tracking patch-introduced behavioral

modifications is difficult.

35

Pivot Turn (1)
Motivation (2/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next

waypoint, and continue the navigation.

Waypoint

36

Pivot Turn (2)
Motivation (3/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next

waypoint, and continue the navigation.

Preventing

rollover accidents at

the pivot turn

37

Motivating Example

void Mode::navigate_to_waypoint() {

- float desired_speed = g2.wp_nav.get_speed();

+ float desired_speed = g2.wp_nav.get_desired_speed();

}

<A faulty patch in a RV control software>

Returns slower speed

while the RV gets

near to a waypoint

Returns a constant speed

set by a configuration

parameter

<Normal RV behavior before

deploying the faulty patch>

<Abnormal RV behavior after

deploying the faulty patch>

This RV can roll overed

due to its high speed.

Developers noticed the buggy

behavior after three months of

deploying the faulty patch

Q: Why do test cases created by

developers fail to detect the faulty patch?

39

• Manually created test cases do not exercise the physical
conditions that trigger the buggy behavior.

Test Cases Created by Developers

Physical condition 1:

Creating a sharp corner

through waypoints

Physical condition 2:

Setting a high ground

speed (e.g., 10 m/s)

Let’s mutate test cases

based on a given patch!

Main Idea of PatchVerif

41

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

42

 Analyze Physical Impact of Patches

• We aim to infer
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

<A patch implementing terrain-following for the CIRCLE flight mode>

Step 1:

Extract names of

variables and

functions in the patch

(1/4)

43

 Analyze Physical Impact of Patches

• We aim to infer
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

Step 2: Filter out all

but nouns from the

variable/function

names

get_alt_frame

location

above_terrain

circle_center

…

center.get_alt_frame

location&

above_terrain

circle_center

…

(2/4)

After filtering process

44

 Analyze Physical Impact of Patches

• The patch changes
• The RV’s location, altitude, and flight mode states

• The patch is affected by
• Terrain environmental factor

Step 3: Match the

extracted terms with

RV physical states

and environmental

conditions in the

synonym table

We call these identified

states and environments
Physicalset

(3/4)

Q: Why do we use a name-based

matching rather than taint analysis?

A: Over-tainting issues

46

• Taint tracking is challenging
• Due to high interdependency among variables in the RV software

Example of Inter-dependency Problems

rngOnGnd’s value is

propagated to 43.6%

of variables in the RV

software

(4/4)

Developers add one line

of patch code at line 2.

47

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

48

• Goal: Finding inputs (user commands/configuration parameters)
triggering the patch code snippet

• Executing inputs related to the identified Physicalset

 Find Inputs Triggering Patches

<A patch implementing terrain-following for the CIRCLE flight mode>

Physicalset: location, altitude, flight mode, terrain

CIRCLE flight mode triggers

the patch code snippet.

49

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

50

 Mutate Test Cases

1) Assign a value greater or lesser than default value to an input

(such as ground speed)

2) If it brings a negative impact, PatchVerif keeps

increasing/decreasing the input’s value

Run test case

on simulators

Patched

version

Mutate

test

case

Bug oracle

RVStates

Unpatched

version

Faulty patch

pool

(1/3)

51

 Mutate Test Cases

• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (5 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

3398 3175

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

9

5

0

5

10

Buggy Before buggy
patch

M
et

er
 (

m
)

Position error

(2/3)

After deploying

the faulty patch

Before deploying

the faulty patch

After deploying

the faulty patch

Before deploying

the faulty patch

52

• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (10 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

4457
3200

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

36

5

0

20

40

Buggy Before buggy patch

M
et

er
 (

m
)

Position error

 Bug Oracle (3/3)

After deploying

the faulty patch

Before deploying

the faulty patch

After deploying

the faulty patch

Before deploying

the faulty patch

53

 Five Physical Invariants as Bug Oracles

• PatchVerif expects that a correct patch should not

1) Increase mission completion time (Timeliness)

2) Increase battery consumption (Efficiency)

3) Increase position errors (Precise navigation)

4) Increase instability (Stability)

5) Cause a new error states (State consistency)

We manually extracted these invariants from a set
of correct patches.

Challenge: A faulty patch can

simultaneously cause positive and

negative physical impacts.

Example: A patch increases stability errors

and decreases position errors.

55

 Bug Oracle

• Our solution: Employ support vector machines (SVMs) to
infer whether a patch is faulty or correct

P1: Timeliness

P2: Efficiency

P3: Precise

 navigation

P4: Stability

P5: State

 consistency

56

• RV control software
• ArduPilot, PX4

Evaluation Results

• Dataset
• 80 already known correct patches
• 80 already known faulty patches

• Results
• PatchVerif achieved, on average, 94.9% F1-score

57

• Dataset
• 1,000 patches

• Did not know whether they were faulty or correct

Evaluation Results

• Results
• PatchVerif discovered 115 previously-unknown faulty patches
• 103 bugs have been acknowledged
• 51 bugs have been patched

58

A Bug in Dijkstra Object Avoidance Algorithm

Demo video: https://youtu.be/TWK5lFPlLB4

59

• The RV’s object avoidance
• Dijkstra’s path planning algorithm

• Create safe areas around any object or geo-fenced location
• Find the shortest path

• “simple avoidance” algorithm
• Stop the RV or go backward if the RV enters a safety margin area

Case Study (Object Avoidance)

60

• Dijkstra’s path planning algorithm makes the RV enter
the safe area ()

Case Study (Object Avoidance Failure)

Safe area calculated

from the geo-fence

Geo-fence

Safety margin

“simple avoidance” algorithm causes the

RV to move backward because the RV

also enters the safety margin area ()

Result: Repeatedly move

back and forth near the

board of a margin area, and

it is unable to complete its

mission

61

Takeaways from PatchVerif

• Writing patches for RV software is error prone.
• Tracking patch-introduced behavioral

modifications is hard.

• PatchVerif
• Patch profiling

• Extracting inputs related to a patch

• Generate new test cases
• By mutating patch-related inputs

• Five physical invariants as bug oracles

Challenge 1: High-dimensional

input spaces of RVs

Challenge 2: Defining

correct behavior

Thank you for listening!

https://kimhyungsub.github.io

https://kimhyungsub.github.io/

63

Using LLMs to Extract Formulas (1)

It looks not bad!

64

Using LLMs to Extract Formulas (2)

It looks better!

65

Using LLMs to Extract Formulas (3)

It looks bad!

66

Using LLMs to Extract Formulas (3)

Parsing natural language is still challenging.

LLMs do not know cause-and-effect relationship.

LLMs have no idea about sequences of behaviors.

	Slide 1: Defeating Logic bugs in Robotic Vehicles
	Slide 2: About Me1)
	Slide 3: What are Robotic Vehicles (RVs)?
	Slide 4: Workflow of Robotic Vehicles (RVs)
	Slide 5: What are Logic Bugs?
	Slide 6: How Common are Logic Bugs?
	Slide 7: Logic Bug in Real World
	Slide 8: Overview of My Research
	Slide 9: Discovering Logic Bugs in RVs
	Slide 10: Limitations of Previous Fuzzers
	Slide 11
	Slide 12: Defining MTL Formulas
	Slide 13
	Slide 14: Mapping Config. Parameters to Physical States
	Slide 15: Mapping Other Types of Inputs to Physical States
	Slide 16: PGFuzz: Temporal Logic-Guided Fuzzing for RVs
	Slide 17: Two types of distances to mutate inputs
	Slide 18: Two types of distances to mutate inputs
	Slide 19: Working example (time T = 1)
	Slide 20: Working example (time T = 2)
	Slide 21: Working example (time T = 3)
	Slide 22: Working example (time T = 4)
	Slide 23: Evaluation
	Slide 24: Takeaways from PGFuzz
	Slide 25: Fixing Logic Bugs in RVs
	Slide 26: Motivation of PGPatch
	Slide 27: User Study
	Slide 28: User Study
	Slide 29: Takeaways from PGPatch
	Slide 30: Testing Correctness of Patches
	Slide 31: What are Faulty Patches?
	Slide 32
	Slide 33: Motivation
	Slide 34
	Slide 35: Pivot Turn (1)
	Slide 36: Pivot Turn (2)
	Slide 37: Motivating Example
	Slide 38
	Slide 39: Test Cases Created by Developers
	Slide 40: Main Idea of PatchVerif
	Slide 41: Overview of PatchVerif
	Slide 42: Analyze Physical Impact of Patches
	Slide 43: Analyze Physical Impact of Patches
	Slide 44: Analyze Physical Impact of Patches
	Slide 45
	Slide 46: Example of Inter-dependency Problems
	Slide 47: Overview of PatchVerif
	Slide 48: Find Inputs Triggering Patches
	Slide 49: Overview of PatchVerif
	Slide 50: Mutate Test Cases
	Slide 51: Mutate Test Cases
	Slide 52: Bug Oracle
	Slide 53: Five Physical Invariants as Bug Oracles
	Slide 54
	Slide 55: Bug Oracle
	Slide 56: Evaluation Results
	Slide 57: Evaluation Results
	Slide 58: A Bug in Dijkstra Object Avoidance Algorithm
	Slide 59: Case Study (Object Avoidance)
	Slide 60: Case Study (Object Avoidance Failure)
	Slide 61: Takeaways from PatchVerif
	Slide 62: Thank you for listening!
	Slide 63: Using LLMs to Extract Formulas (1)
	Slide 64: Using LLMs to Extract Formulas (2)
	Slide 65: Using LLMs to Extract Formulas (3)
	Slide 66: Using LLMs to Extract Formulas (3)

