
Hyungsub Kim

Purdue University

CS 490 Software Security

November 16, 2023

Defeating Logic bugs in Robotic Vehicles



2

• A PhD candidate in Purdue CS 
• Joined in 2018

• Working on how to apply static and dynamic analysis to 

robotic vehicle security

• Published papers into security conferences (S&P, USENIX 

Security, NDSS)

About Me1)

Details of research topics:
1) Find bugs (fuzzing)
2) Automatically patch the bugs
3) Verify the fixed bugs

1) https://kimhyungsub.github.io

https://kimhyungsub.github.io/
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• Vehicles that move autonomously on the ground, in the 
air, on the sea, under the sea, or in space

What are Robotic Vehicles (RVs)?
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• Physical space 
• Attitude, altitude, speed, etc.

• Cyber space 
• Measuring the RV’s current states
• Adjusting actuators to reach target physical states

Workflow of Robotic Vehicles (RVs)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical 

space Sensor data 

gathering



Commands 

to actuators



Control 

algorithm



Decreasing motors’ 

speed to lower altitude

User 

commands

Environmental 

conditions

For control 

algorithm

Configuration 

parameters

Three types 

of inputs

Challenge 1: High-

dimensional input 
spaces of RVs

1

2

3



(1) Environmental condition

Losing GPS signals in an 

urbanized area(3) User command
Triggering ORBIT flight mode

(2) Configuration parameter
COM_POS_FS_DELAY = a 

negative value (e.g., -1)

What are Logic Bugs?

1) A policy described in PX41) documentation:
• “When time exceeds COM_POS_FS_DELAY seconds after GPS loss is detected, the 

GPS fail-safe must be triggered”

2) Yet, PX4 fails to trigger the GPS fail-safe under specific physical conditions.

Challenge 2: Defining 
correct behavior of RVs 

1) PX4: A popular open-source RV control software
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- 98.2% of them (1,234/1,257) are logic bugs.

- 1.8% of them (23/1,257) are memory corruption bugs. 

- Attackers can exploit logic bugs.

Analysis of existing bugs in 
popular RV control software 

How Common are Logic Bugs?



7

• Boeing-737 Max airplanes 
• Crashed due to a design flaw
• Lowered its altitude based on only one broken sensor

Logic Bug in Real World

https://www.dailymail.co.uk/news/article-7056177/US-investigators-believe-bird-strike-factor-

Ethiopian-Airlines-Boeing-737-Max-8-crash.html

Incorrectly measured 

sensor values

How can we find such a critical bug in flight control software? Um… fuzzing?



• Interplay between cyber and physical space creates challenges.

Overview of My Research

Cyber

space

Physical 

space
Discovering 

logic bugs

[NDSS’21]

Logic bugs

Patching

 logic bugs

[S&P’22]

Testing

 patches

[USENIX’23]

Challenge 1: High-dimensional 
input spaces of RVs

Challenge 2: Defining 
correct behavior



Discovering Logic Bugs in RVs

Cyber

space

Physical 

space

Logic bugs

Patching

 logic bugs

[S&P’22]

Testing

 patches

[USENIX’23]

“PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay Celik, Dongyan Xu, NDSS 2021.

Discovering 

logic bugs

[NDSS’21]
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Limitations of Previous Fuzzers

1) Can existing fuzzers discover logic bugs?

2) To detect logic bugs, we need to tackle two challenges (C)
• (C1) Know the RV’s correct behaviors
• (C2) Reduce high-dimensional input spaces

 

What about traditional fuzzers 
(AFL, libFuzzer)?  

• Mutation: Code coverage
• Bug oracle: Memory access violation

No



Q: How can we formally define the 

correct behavior of RVs?

A: Creating MTL1) formulas from documentation 

and comments that describe expected 

behavior of RVs

1) MTL: Metric Temporal Logic



12

A vehicle must not deploy a parachute when the vehicle is:
1) In FLIP or ACRO flight modes
2) Climbing

Defining MTL Formulas

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Never

or
time T time T-1

The formula is created in the form of Metric temporal logic (MTL).

Documents

Extract MTL formulas

and



Q: How can we reduce the high-

dimensional input spaces of RVs?

A: Only testing inputs relevant to MTL formulas

MTL formula Physical 
states

Inputs

Mapping

Mapping

Altitude TemperatureAltitude

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}
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• Static analysis to identify which physical states are 
affected by each configuration parameter

Mapping Config. Parameters to Physical States

configuration 

parameter

①

②

③

<A list of physical states>

Altitude

Roll

Pitch

Yaw

…

Physical 
states

Inputs
Mapping

Altitude Temperature
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• How to map environmental conditions and user commands to 
each term from source code? 

Mapping Other Types of Inputs to Physical States

Simulator1) Change motors’ 

speed

2) Log changed 

physical states

<Changed physical states 

according to motors’ speed>

- Heading

- Throttle

- Altitude

- Climb

Use an RV simulator!

Physical 
states

Inputs
Mapping

Altitude Motors’ speed
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PGFuzz: Temporal Logic-Guided Fuzzing for RVs

• Logic bug-finding tool

 

Creating 

MTL formulas1)

Defining correct 

behaviors of RVs



Reducing

Fuzzing 

space



Building 

distance 

metrics



Mutating 

inputs

Discover logic bugs



Only mutate inputs 

related to the formulas

1) MTL: Metric Temporal Logic

- Behavior-aware bug oracle

- Formula-guided mutation
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• Propositional distance
• Goal: efficiently mutating inputs
• Quantifies how close a proposition to the policy violation

Two types of distances to mutate inputs
Building distance 

metrics (1/6)

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Positive value:

    If the proposition is true

Negative value:

    If the proposition is false

If the term is numeric, we 

use normalized difference.

P1 = 

1  If parachute = on 

-1  If parachute = off 

P2 = 
1  If mode = FLIP/ACRO 

-1  If mode ≠ FLIP/ACRO 
P3 = 

ALTt - ALTt-1

ALTt
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• Global distance
• Goal: detecting a policy violation

Two types of distances to mutate inputs
Building distance 

metrics (2/6)

Positive value    if there is no policy violation 

Negative value    if the RV violates the policy

-1 X [Min{P1, Max(P2, P3)}]
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Working example (time T = 1)

Time

(T)

Parachute

(on/off)

FLIP/ACRO 

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1

2

3

4

: RV’s current states at time T : Calculated distances at time T

Randomly select an 

input and assign a 

random value to the 

selected input

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance 

metrics (3/6)

Motor speed = 

1,8001)

P1 = 

1  If parachute = on 

-1  If parachute = off 

P2 = 
1  If mode = FLIP/ACRO 

-1  If mode ≠ FLIP/ACRO 

P3 = 
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]
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Working example (time T = 2)

Time

(T)

Parachute

(on/off)

FLIP/ACRO 

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed = 

1,8001)

2 off false 100 -1 -1 0.1 1

3

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance 

metrics (4/6)

1) We log (motor, 1,800) 

because the input 

increases P3.

2) PGFUZZ selects an 

input and assign a 

random value to the 

selected input

3) When the selected input increased a 

distance before, we reuse the input and 

value pair (motor, 1,800)

Motor speed = 

1,8001)

P1 = 

1  If parachute = on 

-1  If parachute = off 

P2 = 
1  If mode = FLIP/ACRO 

-1  If mode ≠ FLIP/ACRO 

P3 = 
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]
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Working example (time T = 3)

Time

(T)

Parachute

(on/off)

FLIP/ACRO 

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed = 

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed = 

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance 

metrics (5/6)

PGFUZZ selects an input

P1 = 

1  If parachute = on 

-1  If parachute = off 

P2 = 
1  If mode = FLIP/ACRO 

-1  If mode ≠ FLIP/ACRO 

P3 = 
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]
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Working example (time T = 4)

Time

(T)

Parachute

(on/off)

FLIP/ACRO 

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed = 

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed = 

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4 on false 112 1 -1 0.02 -0.02

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance 

metrics (6/6)

Policy violation!

Vehicle must not 

increase its altitude

P1 = 

1  If parachute = on 

-1  If parachute = off 

P2 = 
1  If mode = FLIP/ACRO 

-1  If mode ≠ FLIP/ACRO 

P3 = 
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]



23

• RV control software
• ArduPilot, PX4, and Paparazzi

Evaluation 

• 56 extracted policies
• Fuzzing 48 hours per each control software
• Violating 14 policies in the three-control software

• Found 156 bugs
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Takeaways from PGFuzz

• A new fuzzing approach to find logic bugs
• Behavior-aware bug oracle

• Leverage MTL formulas

• Customized program analysis
• Mapping a formula to inputs

• Discovering subtle logic bugs

Challenge 1: High-dimensional 

input spaces of RVs

Challenge 2: Defining 

correct behavior



Fixing Logic Bugs in RVs

Cyber

space

Physical 

space

Logic bugs

Testing

 patches

[USENIX’23]

Discovering 

logic bugs

[NDSS’21]

“PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, Dongyan Xu, S&P 2022.

Patching

 logic bugs

[S&P’22]
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Motivation of PGPatch

Sailboat formula:  {(armed = false)} ˄ {(SAIL_ENABLE = True) 

^ (WNDVN_TYPE = False) → (pre_arm_checks = error)}
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• Aim to determine
• How efficient PGPatch is in patching logic bugs compared to 

manual patching

User Study

• Method
• Recruit 6 RV developers and 12 experienced RV users

• 1 subject was an official ArduPilot developer

• Ask participants to create: 
• 5 patches using PGPatch 
• 5 corresponding source-level patches
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• Correctness
• 2 (editing source code) vs. 4.6 (fixing bugs through PGPatch)

• Spent time
• 31 mins (editing source code) vs. 2.6 mins (fixing bugs through PGPatch)

User Study

2

4.6

0
1
2
3
4
5

Editing
source code

Fixing bugs by
using PGPatch

formulas

#
 o

f 
c
o
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e
c
t 

a
n
s
w

e
rs

31

2.6
0

10

20

30

40

Editing
source code

Fixing bugs by
using PGPatch

formulas

S
p
e
n
t 
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m

e
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u
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s
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Takeaways from PGPatch

• A new approach to fix logic bugs
• Reuse existing MTL formulas

• Less error-prone compared to 
manually patching bugs

• Proven by the user study

Challenge 1: High-dimensional 

input spaces of RVs

Challenge 2: Defining 

correct behavior



Testing Correctness of Patches

Cyber

space

Physical 

space

Logic bugs

Patching

 logic bugs

[S&P’22]

Discovering 

logic bugs

[NDSS’21]

“PatchVerif: Discovering Faulty Patches in Robotic Vehicles”,

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, Dongyan Xu, USENIX Security 2023.

Testing

 patches

[USENIX’23]
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• Patches unintentionally breaking the software 

functionality

• Mainly three different types of faulty patches:

What are Faulty Patches?
Background (2/2)

1) Partially fixing a buggy behavior

2) Fixing an incorrect behavior but breaking 

another correct behavior

3) Adding a new feature but introducing a bug



Q: Why are faulty patches important in 

Robotic Vehicles (RVs)?
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• Writing patches for RV control software is error prone1)

• Developers reverted or fixed 345 faulty patches in ArduPilot 

and PX4 in the past 5 years

• Faulty patches lead to unwanted physical behavior
• Mission failure

• Unstable attitude/position control

• Crashing on the ground

Motivation

1) Hyungsub Kim et al., “PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles”, S&P 2022.



Q: Why is creating patches for RV 

control software challenging?

A: Tracking patch-introduced behavioral 

modifications is difficult.
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Pivot Turn (1)
Motivation (2/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next 

waypoint, and continue the navigation. 

Waypoint
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Pivot Turn (2)
Motivation (3/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next 

waypoint, and continue the navigation. 

Preventing

rollover accidents at 

the pivot turn 
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Motivating Example

void Mode::navigate_to_waypoint() {

- float desired_speed = g2.wp_nav.get_speed();

+ float desired_speed = g2.wp_nav.get_desired_speed();

}

<A faulty patch in a RV control software>

Returns slower speed 

while the RV gets 

near to a waypoint

Returns a constant speed 

set by a configuration 

parameter

<Normal RV behavior before 

deploying the faulty patch>

<Abnormal RV behavior after 

deploying the faulty patch>

This RV can roll overed 

due to its high speed.

Developers noticed the buggy 

behavior after three months of 

deploying the faulty patch



Q: Why do test cases created by 

developers fail to detect the faulty patch?
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• Manually created test cases do not exercise the physical 
conditions that trigger the buggy behavior.

Test Cases Created by Developers

Physical condition 1: 

Creating a sharp corner 

through waypoints

Physical condition 2: 

Setting a high ground 

speed (e.g., 10 m/s)



Let’s mutate test cases 

based on a given patch!

Main Idea of PatchVerif
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Overview of PatchVerif

Bug oracle



Faulty

patches

Find inputs 

triggering the patch



Analyze the patch type



Mutate test 

cases



Analyze the physical 

impact of the patch
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 Analyze Physical Impact of Patches

• We aim to infer 
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

<A patch implementing terrain-following for the CIRCLE flight mode>

Step 1:

Extract names of 

variables and 

functions in the patch

(1/4)
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 Analyze Physical Impact of Patches

• We aim to infer 
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

Step 2: Filter out all 

but nouns from the 

variable/function 

names

get_alt_frame

location

above_terrain

circle_center

…

center.get_alt_frame

location&

above_terrain

circle_center

…

(2/4)

After filtering process
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 Analyze Physical Impact of Patches

• The patch changes 
• The RV’s location, altitude, and flight mode states

• The patch is affected by 
• Terrain environmental factor

Step 3: Match the 

extracted terms with 

RV physical states 

and environmental 

conditions in the 

synonym table

We call these identified 

states and environments 
Physicalset 

(3/4)



Q: Why do we use a name-based 

matching rather than taint analysis?

A: Over-tainting issues
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• Taint tracking is challenging   
• Due to high interdependency among variables in the RV software

Example of Inter-dependency Problems

rngOnGnd’s value is 

propagated to 43.6% 

of variables in the RV 

software

(4/4)

Developers add one line 

of patch code at line 2.
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Overview of PatchVerif

Bug oracle



Faulty

patches

Find inputs 

triggering the patch



Analyze the patch type



Mutate test 

cases



Analyze the physical 

impact of the patch
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• Goal: Finding inputs (user commands/configuration parameters) 
triggering the patch code snippet

• Executing inputs related to the identified Physicalset

 Find Inputs Triggering Patches

<A patch implementing terrain-following for the CIRCLE flight mode>

Physicalset: location, altitude, flight mode, terrain

CIRCLE flight mode triggers 

the patch code snippet. 
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Overview of PatchVerif

Bug oracle



Faulty

patches

Find inputs 

triggering the patch



Analyze the patch type



Mutate test 

cases



Analyze the physical 

impact of the patch
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 Mutate Test Cases

1) Assign a value greater or lesser than default value to an input 

(such as ground speed)

2) If it brings a negative impact, PatchVerif keeps 

increasing/decreasing the input’s value

Run test case 

on simulators

Patched

version

Mutate 

test 

case

Bug oracle

RVStates

Unpatched

version

Faulty patch 

pool

(1/3)
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 Mutate Test Cases

• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (5 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

3398 3175

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

9

5

0

5

10

Buggy Before buggy
patch

M
et

er
 (

m
)

Position error

(2/3)

After deploying 

the faulty patch

Before deploying 

the faulty patch

After deploying 

the faulty patch

Before deploying 

the faulty patch
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• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (10 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

4457
3200

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

36

5

0

20

40

Buggy Before buggy patch

M
et

er
 (

m
)

Position error

 Bug Oracle (3/3)

After deploying 

the faulty patch

Before deploying 

the faulty patch

After deploying 

the faulty patch

Before deploying 

the faulty patch
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 Five Physical Invariants as Bug Oracles

• PatchVerif expects that a correct patch should not 

1) Increase mission completion time (Timeliness)

2) Increase battery consumption (Efficiency)

3) Increase position errors (Precise navigation)

4) Increase instability (Stability)

5) Cause a new error states (State consistency)

We manually extracted these invariants from a set 
of correct patches.



Challenge: A faulty patch can 

simultaneously cause positive and 

negative physical impacts.

Example: A patch increases stability errors 

and decreases position errors.
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 Bug Oracle

• Our solution: Employ support vector machines (SVMs) to 
infer whether a patch is faulty or correct

P1: Timeliness

P2: Efficiency

P3: Precise 

     navigation

P4: Stability 

P5: State 

     consistency 
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• RV control software
• ArduPilot, PX4

Evaluation Results

• Dataset
• 80 already known correct patches
• 80 already known faulty patches

• Results
• PatchVerif achieved, on average, 94.9% F1-score 
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• Dataset
• 1,000 patches

• Did not know whether they were faulty or correct

Evaluation Results 

• Results
• PatchVerif discovered 115 previously-unknown faulty patches
• 103 bugs have been acknowledged
• 51 bugs have been patched
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A Bug in Dijkstra Object Avoidance Algorithm

Demo video: https://youtu.be/TWK5lFPlLB4
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• The RV’s object avoidance
• Dijkstra’s path planning algorithm

• Create safe areas around any object or geo-fenced location
• Find the shortest path

• “simple avoidance” algorithm
• Stop the RV or go backward if the RV enters a safety margin area

Case Study (Object Avoidance) 
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• Dijkstra’s path planning algorithm makes the RV enter 
the safe area (       )

Case Study (Object Avoidance Failure) 

Safe area calculated 

from the geo-fence

Geo-fence

Safety margin

“simple avoidance” algorithm causes the 

RV to move backward because the RV 

also enters the safety margin area (      )

Result: Repeatedly move 

back and forth near the 

board of a margin area, and 

it is unable to complete its

mission
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Takeaways from PatchVerif

• Writing patches for RV software is error prone.
• Tracking patch-introduced behavioral 

modifications is hard.

• PatchVerif
• Patch profiling

• Extracting inputs related to a patch

• Generate new test cases
• By mutating patch-related inputs

• Five physical invariants as bug oracles

Challenge 1: High-dimensional 

input spaces of RVs

Challenge 2: Defining 

correct behavior



Thank you for listening!

 

https://kimhyungsub.github.io

https://kimhyungsub.github.io/
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Using LLMs to Extract Formulas (1)

It looks not bad!
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Using LLMs to Extract Formulas (2)

It looks better!
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Using LLMs to Extract Formulas (3)

It looks bad!
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Using LLMs to Extract Formulas (3)

Parsing natural language is still challenging.

LLMs do not know cause-and-effect relationship.

LLMs have no idea about sequences of behaviors.
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