
Program Analysis for IoT/CPS

Hyungsub Kim

Purdue University

2

• A PhD student in Purdue CS
• Joined in 2018
• Working on how to apply static and dynamic analysis to

robotic vehicle security
• Published papers into security conferences (NDSS,

USENIX, ACSAC)

About me

Details of research topics:
1) Find bugs (fuzzing)
2) Automatically patch the bugs
3) Verify the fixed bugs

3

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

4

1. Understanding terms in program analysis domain
• Path-sensitive, flow-sensitive
• Intra-procedural, Inter-procedural
• Static single assignment (SSA), pointer analysis

Goal (1)

But why should we care about these terms?

5

1. why should we care about these terms?
• To leverage existing program analysis tools
• To understand security papers

Goal (2)

<A paragraph on a paper in NDSS 2021>

Can you understand

this paragraph?

6

2. Understanding how each technique is used for
improving security in CPS

Goal (3)

But why? Unsolved research question
- Solve the research problems

- Publish papers

Apply program analysis

to the unsolved problems

7

• A process of automatically analyzing behaviors of a
program

• Applications:
• Program understanding
• Compiler optimizations
• Bug finding

What is Program Analysis

Automatically generated report

8

• Modern system software
• Extremely large and complex but error-prone

Why should we automate this analysis?

Memory

Leaks

Buffer

Overflows

Null

Pointers

Use-After-Frees

Data-races

More

Complex!

More

Buggy!

9

dynamic

static

commercialopen-source

gs™

SVF-tool

Flawfinder FindBu

Cppcheck

Splint
Semmle

Iroh.js sanitizers
Jalangi2

Trustwave

Existing Program Analysis Tools

10

Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

• + Pin-point bugs at source code level.
• + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.

11

Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

• + Pin-point bugs at source code level.
• + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.

Dynamic Analysis

• Analyze a program at runtime – inspection of its running program by examining some

executable paths depending on specific test inputs

• + Identify bugs at runtime (catch it when you observe it).
• + Zero or very low false alarm rates.

• - Runtime overhead due to code instrumentation.

• - May miss bugs (false negative) due to under-approximation.

12

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

13

• Soundness
• If analysis A says that X is true, then X is true.

• Example
• If analysis A says that X is buggy, then X is buggy.

Characterizing Program Analyses (1)

True things

Things A says Trivially sound: Say nothing

True bugs

Bug detected

by A

Trivially sound: Say there is no

buggy statement

14

• Completeness
• If X is true, then analysis A says X is true.

• Example
• If X is buggy, then analysis A says X is buggy

Characterizing Program Analyses (1)

Things A says

True things Trivially complete: Say everything

Bugs A says

True bugs
Trivially complete: Say every

statement is buggy

15

Sound vs. Complete (1)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

16

Sound vs. Complete (2)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

17

Sound vs. Complete (3)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

18

Sound vs. Complete (4)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

19

Program Representations

• Original representations of programs
• Source code
• Binaries

• They are hard for machines to analyze

• Software is translated into certain representations
before analyses are applied.

20

Control-Flow Graph

• Directed graph
• Edge: summarizing flow of graph
• Node: a statement in a program

Labelled edge: “true”/”false”

for conditional jumps

Unlabeled edge:

unconditional jump

Back-edge: Loop

21

Basic Block (1)

• Definition
• Group statements without intervening control flow

22

Basic Block (2)

• Definition
• Group statements without intervening control flow

23

Call Graph

• Node
• Represents a function

• Edge
• Represents a function invocation

24

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

25

Def-Use and Use-Def chains

• Dataflow analysis problem
• Find all sites where a variable X is used

• (e.g., y = X;)

• Find all sites where that variable X was last defined
• (e.g., X = 1;)

26

Def-Use and Use-Def chains

• Def-Use (DU) chains
• Link each def (assigns-to) of a variable to all uses

• Use-Def (UD) chains
• Link each use of a variable to its def

<Def-Use chain>
<Use-Def chain>

27

Applications of Def-Use chains (1)

• Workflow of robotic vehicles (RV)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical

space Sensor data

gathering



Commands

to actuators



Control

algorithm



Decreasing motors’

speed to lower altitude

User

commands

Environment

factors

For control

algorithm

Parameters

Three types

of inputs

≈ 1,000

≈ 100

≈ 300

Challenging issue: Huge input space

28

Applications of Def-Use chains (2)

• Problem 1:
• You need to find inputs that change the RV’s altitude state.

configuration

parameter
①

②

③

[definition | write access | read access]

(1) [ground_temp | line 1 | line 2]

(2) [_user_temp | line 2 | line 315]

(3) [temp | line 315 | line 320]

(4) [altitude | line 320 | …]

①

②

③

Result: “TEMP” configuration parameter

will change the RV’s altitude

<Def-Use chain>

④

29

Applications of Def-Use chains (3)

• Problem 2:
• You need to develop an automatic program repair tool.
• It automatically fixes divide-by-zero bugs.

If PSC_POSZ_P = 0 and RTL

flight mode is turn on, the

arithmetic exception happens

30

Applications of Def-Use chains (3)

• Two cases:
1) There is no any “if check statement” to prevent the divide-by-

zero.
2) There is an “if statement” to prevent such error. But, the check

statement is incorrect.

if (_p_pos_z.KP() <= 0.0f) {

 return;

}

_accel_z_cms / _p_pos_z.KP();

…

_accel_z_cms / _p_pos_z.KP();

<Case 1>

<Case 2>

PSC_POSZ_P = 0.00000001 still

leads to the divide-by-zero.

31

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

32

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

33

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

34

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

35

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%_p_pos_z 0x5d3ff88 0x5d3e4b8 0x1470480

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Result: This code snippet

compares _p_pos_z with 0!

36

Same Variable Name May Be Unrelated

• The values in reused storage locations
• May be probably independent

• Problem of this situation
• Unrelated uses of same variable are mixed together

• This complicates program analysis

X = A + 1

Y = X + B

X = F + 7

C = X + 1

F = 2 F = 3

X is independent from X

true false

37

Static Single Assignment (SSA)

• Idea
• Each variable be assigned exactly once, and every variable

be defined before it is used

• Why?
• Explicitly express different definitions of variables

Original SSA

[SSA]

if (a2 < c1) {

 ….

}

[Original]

if (a < c) {

 ….

}

38

Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

a = 0

b = …

if b < 4

a = b

c = a + b

Original

a1 = 0

b1 = …

if b1 < 4

a2 = b1

???

SSA

true

false

true

false

39

Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

• Solution
• Φ-function

a = 0

b = …

if b < 4

a = b

c = a + b

Original a1 = 0

b1 = …

if b1 < 4

a2 = b1

a3 = Φ(a1,a2)

c1 = a3 + b1

SSA

a3 is assigned either

a1 or a2 depending on

which control path

was used to reach the

Φ function

true

false

true

false

40

Pointer Analysis

• What memory locations can a pointer expression refer to?

• Alias analysis
• When do two pointer expressions refer to the same storage

location?

int X = 99;

P = &X;

Q = P;

*P and *Q alias

99

XP

Q

41

Why do we want to know?

• Pointer analysis tells us what memory locations code uses
or modifies

• Useful in many analyses

E.g.,

*P = A + B;

 Y = A + B;

Let’s assume that A+B is 10.

Then, can we do that?

*P = 10;

Y = 10;

5

B

P 5

A

If *P aliases A or B, then the

second computation of A+B

is not redundant

42

Pointer Operations in C

• Recall C pointer semantics
• &a: Address of a
• *a: Object pointed to by a
• *(&a) = a: Converse operators

a = &b

Referencing
• Create location

int *b = &c

a = *b

Dereferencing
read

• Access location
• Indirect read

a = b

Aliasing
• Copy pointer

int *a = &c

*a = b

Dereferencing
write

• Access location
• Indirect write

a = new A() a = b.f a = ba.f = b

C

JAVA

43

Why Is Pointer Analysis Hard?

• Issue
• There are infinite many ways to express the same data.

44

Approximation to the Rescue

• Pointer analysis problem is undecidable
• We must sacrifice some combinations of

• Soundness, completeness, termination

• Many sound approximate algorithms for pointer analysis
• Differ in two key aspects

• How to abstract the heap
• How to abstract control-flow

45

May-alias Analysis vs. Must-alias Analysis

• May analysis assumes
• Aliasing that may occur during execution

• Must analysis assumes
• Aliasing that must occur during execution

P.foo = 1;

Q.foo = 2;

Y = P.foo + 3;

*May analysis

Assumption: Q may alias P

Analysis results:

 Case 1: Y = 4

 Case 2: Y = 5

*Must analysis

Assumption: Q must alias P

Analysis results: Y = 5

I will explain only the may-alias analysis

If (user.input = A) {

 P = Q;

}

46

Two Kinds of Pointers

• Heap-directed

• Stack-directed

p = new … or p = malloc(…)

int *p = NULL, v = 0;

p = &v
I will explain only the stack-directed pointer analysis

47

Pointer Analysis Algorithm

• Andersen’s Points-To Analysis
• Asymptotic performance is O(n3)
• Context-insensitive, flow-insensitive, path-insensitive
• Four collecting rules

• Referencing
• Copy
• Dereferencing (indirect) read
• Dereferencing (indirect) write

48

Context Sensitivity

• Consider calling context

int foo (int i) {

 return i;
}
…
y1 = foo (1);
y2 = foo (2);

With context sensitivity
• More precise
• We have one i per call site of foo
• y1 is 1
• y2 is 2

Without context sensitivity
• Less precise, but faster
• We have one i total
• y1 is {1, 2}
• y2 is {1, 2}

49

Flow Sensitivity

• Consider control flow and order of execution

x = 2;
y = x;
x = 3;

With flow sensitivity
• y is 2

Without flow sensitivity
• y is {2, 3}

50

Path Sensitivity

• Consider properties inferred from order of execution

x = 0;
if (P) {
 x = 1;
}
y = 2;

If (P) {
 y = x;
}

With path sensitivity
• y is {1, 2} at line 8
• Records that x = 0 when P = false
• Knows that line 8 is executed only if P = true

(i.e., x ≠ 0 at line 8)

Without path sensitivity
• y is {0, 1, 2} at line 8
• Less precise

1:
2:
3:
4:
5:
6:
7:
8:
9:

Line

51

Rule for Referencing

52

Rule for Copy

53

Rule for Indirect Read

54

Rule for Indirect Write

55

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

56

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

57

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

58

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

59

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

60

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

61

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

62

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Imprecision in Andersen’s analysis: q never points to a in a concrete execution.

63

Static Analysis Tools

• LLVM
• To convert a program into a language-independent

intermediate representation (IR)
• Def-Use & Use-Def1)

• SVF2)

• Analysis tool for LLVM-based languages
• Pointer alias analysis
• Memory SSA form construction
• Data value-flow tracking

1) https://labs.engineering.asu.edu/mps-lab/resources/llvm-resources/llvm-def-use-use-def-chains/

2) https://github.com/SVF-tools/SVF

 https://github.com/SVF-tools/SVF-Teaching

64

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

65

Dynamic Analysis

• Gcov
• Measure code coverage in a program

• Dynamic symbolic execution
• Automatically generating tests to achieve higher levels of

coverage in a program

66

Gcov

<test.c>

a.out: An instrumented executable file

-ftest-coverage: Adds instructions for
counting the number of times individual lines
are executed

-fprofile-arcs: Branch instrumentation
records how frequently different paths are
taken through ‘if’ statements and other
conditionals.

67

Gcov

<test.c>

The gcov command produces an annotated version of the original source file,
with the file extension ‘.gcov’, containing counts of the number of times each
line was executed.

68

Gcov

<test.c>

69

Examples of Gcov Usages

• Why is Gcov Useful?
• Identify which code test cases cover
• Identify inputs to trigger a specific code snippet

• ArduPilot
• https://firmware.ardupilot.org/coverage/

• PX4
• https://coveralls.io/github/PX4/Firmware

70

Existing Approach

• Random Testing
• Generate random inputs
• Execute the program on those (concrete) inputs

void test_me (int x) {

 if (x == 94389) {

 // Buggy code

 }

}

Probability of finding the buggy code: 1/232 = 0.000000023%

71

Dynamic Symbolic Execution (DSE)

• DSE
• Pick random input values
• Keep track of both concrete values and symbolic constraints
• Use concrete values to simplify symbolic constraints

72

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

x = x0

y = y0

Pick random

input values

73

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

74

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

2*y0 != x0

75

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

2*y0 != x0

Solve: 2*y0 == x0
Solution: x0 = 2, y0 = 1

76

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

x = x0

y = y0

Values obtained from

a constraint solver

77

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

78

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0

79

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 <= y0+10

Solve: (2*y0 == x0) and (x0 > y0+10)
Solution: x0 = 30, y0 = 15

80

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

x = x0

y = y0

Values obtained from

a constraint solver

81

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

82

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

83

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10

84

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10

Finally trigger the

buggy code!

- Concrete execution guided symbolic execution
- Symbolic execution guided generation of concrete

inputs (increases program code coverage)

85

Why is DSE Useful?

• Problem
• You want to develop a tool that automatically tests patched

code lines.
• ‘Test’ means that you need to trigger the code lines.
• How?

void test_me (int x, int y, int i, int j, int k, int l) {

 …

 if (k == l) {

 if (x == y && i == j) {

 // Patched code

 } } }

You can get inputs (e.g., x, y, and i), which trigger the
patched code, from a dynamic symbolic execution.

86

Symbolic Execution Tools

• KLEE1)

• Built on top of the LLVM compiler infrastructure

• angr2)

• Static and dynamic symbolic analysis for binaries

1) https://klee.github.io/tutorials/

2) https://angr.io/

https://klee.github.io/tutorials/
https://angr.io/

87

Summary

• Program analysis
• Is useful to understand behaviors of programs

• Find inputs that change the RV’s altitude state (Def-use)

• Find if statements that prevent divide-by-zero bugs (Def-use)

• Identify which code test cases cover (Gcov)

• Identify inputs to trigger a specific code snippet (DSE)

88

Summary

• What are the next steps?
• More understanding about program analysis

• https://www.youtube.com/watch?v=v0dKdfmziHs&t=1578s

• Dive into static analysis
• https://github.com/SVF-tools/SVF-Teaching

• Dive into symbolic execution
• https://klee.github.io/tutorials/

Thank you! Questions?

kim2956@purdue.edu

mailto:dxu@purdue.edu

	Slide 1: Program Analysis for IoT/CPS
	Slide 2: About me
	Slide 3: Outline
	Slide 4: Goal (1)
	Slide 5: Goal (2)
	Slide 6: Goal (3)
	Slide 7: What is Program Analysis
	Slide 8: Why should we automate this analysis?
	Slide 9: Existing Program Analysis Tools
	Slide 10: Static Analysis vs. Dynamic Analysis
	Slide 11: Static Analysis vs. Dynamic Analysis
	Slide 12: Outline
	Slide 13: Characterizing Program Analyses (1)
	Slide 14: Characterizing Program Analyses (1)
	Slide 15: Sound vs. Complete (1)
	Slide 16: Sound vs. Complete (2)
	Slide 17: Sound vs. Complete (3)
	Slide 18: Sound vs. Complete (4)
	Slide 19: Program Representations
	Slide 20: Control-Flow Graph
	Slide 21: Basic Block (1)
	Slide 22: Basic Block (2)
	Slide 23: Call Graph
	Slide 24: Outline
	Slide 25: Def-Use and Use-Def chains
	Slide 26: Def-Use and Use-Def chains
	Slide 27: Applications of Def-Use chains (1)
	Slide 28: Applications of Def-Use chains (2)
	Slide 29: Applications of Def-Use chains (3)
	Slide 30: Applications of Def-Use chains (3)
	Slide 31: Applications of Def-Use chains (3)
	Slide 32: Applications of Def-Use chains (3)
	Slide 33: Applications of Def-Use chains (3)
	Slide 34: Applications of Def-Use chains (3)
	Slide 35: Applications of Def-Use chains (3)
	Slide 36: Same Variable Name May Be Unrelated
	Slide 37: Static Single Assignment (SSA)
	Slide 38: Merge Points (SSA)
	Slide 39: Merge Points (SSA)
	Slide 40: Pointer Analysis
	Slide 41: Why do we want to know?
	Slide 42: Pointer Operations in C
	Slide 43: Why Is Pointer Analysis Hard?
	Slide 44: Approximation to the Rescue
	Slide 45: May-alias Analysis vs. Must-alias Analysis
	Slide 46: Two Kinds of Pointers
	Slide 47: Pointer Analysis Algorithm
	Slide 48: Context Sensitivity
	Slide 49: Flow Sensitivity
	Slide 50: Path Sensitivity
	Slide 51: Rule for Referencing
	Slide 52: Rule for Copy
	Slide 53: Rule for Indirect Read
	Slide 54: Rule for Indirect Write
	Slide 55: Stack-Based Pointer Analysis Example
	Slide 56: Stack-Based Pointer Analysis Example
	Slide 57: Stack-Based Pointer Analysis Example
	Slide 58: Stack-Based Pointer Analysis Example
	Slide 59: Stack-Based Pointer Analysis Example
	Slide 60: Stack-Based Pointer Analysis Example
	Slide 61: Stack-Based Pointer Analysis Example
	Slide 62: Stack-Based Pointer Analysis Example
	Slide 63: Static Analysis Tools
	Slide 64: Outline
	Slide 65: Dynamic Analysis
	Slide 66: Gcov
	Slide 67: Gcov
	Slide 68: Gcov
	Slide 69: Examples of Gcov Usages
	Slide 70: Existing Approach
	Slide 71: Dynamic Symbolic Execution (DSE)
	Slide 72: DSE example
	Slide 73: DSE example
	Slide 74: DSE example
	Slide 75: DSE example
	Slide 76: DSE example
	Slide 77: DSE example
	Slide 78: DSE example
	Slide 79: DSE example
	Slide 80: DSE example
	Slide 81: DSE example
	Slide 82: DSE example
	Slide 83: DSE example
	Slide 84: DSE example
	Slide 85: Why is DSE Useful?
	Slide 86: Symbolic Execution Tools
	Slide 87: Summary
	Slide 88: Summary
	Slide 89: Thank you! Questions?

