
Program Analysis for IoT/CPS

Hyungsub Kim

Purdue University

2

• A PhD student in Purdue CS
• Joined in 2018
• Working on how to apply static and dynamic analysis to

robotic vehicle security
• Published papers into security conferences (NDSS,

USENIX, ACSAC)

About me

Details of research topics:
1) Find bugs (fuzzing)
2) Automatically patch the bugs
3) Verify the fixed bugs

3

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

4

1. Understanding terms in program analysis domain
• Path-sensitive, flow-sensitive
• Intra-procedural, Inter-procedural
• Static single assignment (SSA), pointer analysis

Goal (1)

But why should we care about these terms?

5

1. why should we care about these terms?
• To leverage existing program analysis tools
• To understand security papers

Goal (2)

<A paragraph on a paper in NDSS 2021>

Can you understand

this paragraph?

6

2. Understanding how each technique is used for
improving security in CPS

Goal (3)

But why? Unsolved research question
- Solve the research problems

- Publish papers

Apply program analysis

to the unsolved problems

7

• A process of automatically analyzing behaviors of a
program

• Applications:
• Program understanding
• Compiler optimizations
• Bug finding

What is Program Analysis

Automatically generated report

8

• Modern system software
• Extremely large and complex but error-prone

Why should we automate this analysis?

Memory

Leaks

Buffer

Overflows

Null

Pointers

Use-After-Frees

Data-races

More

Complex!

More

Buggy!

9

dynamic

static

commercialopen-source

gs™

SVF-tool

Flawfinder FindBu

Cppcheck

Splint
Semmle

Iroh.js sanitizers
Jalangi2

Trustwave

Existing Program Analysis Tools

10

Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

• + Pin-point bugs at source code level.
• + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.

11

Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

• + Pin-point bugs at source code level.
• + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.

Dynamic Analysis

• Analyze a program at runtime – inspection of its running program by examining some

executable paths depending on specific test inputs

• + Identify bugs at runtime (catch it when you observe it).
• + Zero or very low false alarm rates.

• - Runtime overhead due to code instrumentation.

• - May miss bugs (false negative) due to under-approximation.

12

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

13

• Soundness
• If analysis A says that X is true, then X is true.

• Example
• If analysis A says that X is buggy, then X is buggy.

Characterizing Program Analyses (1)

True things

Things A says Trivially sound: Say nothing

True bugs

Bug detected

by A

Trivially sound: Say there is no

buggy statement

14

• Completeness
• If X is true, then analysis A says X is true.

• Example
• If X is buggy, then analysis A says X is buggy

Characterizing Program Analyses (1)

Things A says

True things Trivially complete: Say everything

Bugs A says

True bugs
Trivially complete: Say every

statement is buggy

15

Sound vs. Complete (1)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

16

Sound vs. Complete (2)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

17

Sound vs. Complete (3)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

18

Sound vs. Complete (4)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by
analysis A

19

Program Representations

• Original representations of programs
• Source code
• Binaries

• They are hard for machines to analyze

• Software is translated into certain representations
before analyses are applied.

20

Control-Flow Graph

• Directed graph
• Edge: summarizing flow of graph
• Node: a statement in a program

Labelled edge: “true”/”false”

for conditional jumps

Unlabeled edge:

unconditional jump

Back-edge: Loop

21

Basic Block (1)

• Definition
• Group statements without intervening control flow

22

Basic Block (2)

• Definition
• Group statements without intervening control flow

23

Call Graph

• Node
• Represents a function

• Edge
• Represents a function invocation

24

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

25

Def-Use and Use-Def chains

• Dataflow analysis problem
• Find all sites where a variable X is used

• (e.g., y = X;)

• Find all sites where that variable X was last defined
• (e.g., X = 1;)

26

Def-Use and Use-Def chains

• Def-Use (DU) chains
• Link each def (assigns-to) of a variable to all uses

• Use-Def (UD) chains
• Link each use of a variable to its def

<Def-Use chain>
<Use-Def chain>

27

Applications of Def-Use chains (1)

• Workflow of robotic vehicles (RV)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical

space Sensor data

gathering

Commands

to actuators

Control

algorithm

Decreasing motors’

speed to lower altitude

User

commands

Environment

factors

For control

algorithm

Parameters

Three types

of inputs

≈ 1,000

≈ 100

≈ 300

Challenging issue: Huge input space

28

Applications of Def-Use chains (2)

• Problem 1:
• You need to find inputs that change the RV’s altitude state.

configuration

parameter
①

②

③

[definition | write access | read access]

(1) [ground_temp | line 1 | line 2]

(2) [_user_temp | line 2 | line 315]

(3) [temp | line 315 | line 320]

(4) [altitude | line 320 | …]

①

②

③

Result: “TEMP” configuration parameter

will change the RV’s altitude

<Def-Use chain>

④

29

Applications of Def-Use chains (3)

• Problem 2:
• You need to develop an automatic program repair tool.
• It automatically fixes divide-by-zero bugs.

If PSC_POSZ_P = 0 and RTL

flight mode is turn on, the

arithmetic exception happens

30

Applications of Def-Use chains (3)

• Two cases:
1) There is no any “if check statement” to prevent the divide-by-

zero.
2) There is an “if statement” to prevent such error. But, the check

statement is incorrect.

if (_p_pos_z.KP() <= 0.0f) {

 return;

}

_accel_z_cms / _p_pos_z.KP();

…

_accel_z_cms / _p_pos_z.KP();

<Case 1>

<Case 2>

PSC_POSZ_P = 0.00000001 still

leads to the divide-by-zero.

31

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

32

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

33

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

34

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Def-use of

_p_pos_z

35

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%_p_pos_z 0x5d3ff88 0x5d3e4b8 0x1470480

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of

the instruction

<Backtracking the def-use chain
of _p_pos_z >

Result: This code snippet

compares _p_pos_z with 0!

36

Same Variable Name May Be Unrelated

• The values in reused storage locations
• May be probably independent

• Problem of this situation
• Unrelated uses of same variable are mixed together

• This complicates program analysis

X = A + 1

Y = X + B

X = F + 7

C = X + 1

F = 2 F = 3

X is independent from X

true false

37

Static Single Assignment (SSA)

• Idea
• Each variable be assigned exactly once, and every variable

be defined before it is used

• Why?
• Explicitly express different definitions of variables

Original SSA

[SSA]

if (a2 < c1) {

 ….

}

[Original]

if (a < c) {

 ….

}

38

Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

a = 0

b = …

if b < 4

a = b

c = a + b

Original

a1 = 0

b1 = …

if b1 < 4

a2 = b1

???

SSA

true

false

true

false

39

Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

• Solution
• Φ-function

a = 0

b = …

if b < 4

a = b

c = a + b

Original a1 = 0

b1 = …

if b1 < 4

a2 = b1

a3 = Φ(a1,a2)

c1 = a3 + b1

SSA

a3 is assigned either

a1 or a2 depending on

which control path

was used to reach the

Φ function

true

false

true

false

40

Pointer Analysis

• What memory locations can a pointer expression refer to?

• Alias analysis
• When do two pointer expressions refer to the same storage

location?

int X = 99;

P = &X;

Q = P;

*P and *Q alias

99

XP

Q

41

Why do we want to know?

• Pointer analysis tells us what memory locations code uses
or modifies

• Useful in many analyses

E.g.,

*P = A + B;

 Y = A + B;

Let’s assume that A+B is 10.

Then, can we do that?

*P = 10;

Y = 10;

5

B

P 5

A

If *P aliases A or B, then the

second computation of A+B

is not redundant

42

Pointer Operations in C

• Recall C pointer semantics
• &a: Address of a
• *a: Object pointed to by a
• *(&a) = a: Converse operators

a = &b

Referencing
• Create location

int *b = &c

a = *b

Dereferencing
read

• Access location
• Indirect read

a = b

Aliasing
• Copy pointer

int *a = &c

*a = b

Dereferencing
write

• Access location
• Indirect write

a = new A() a = b.f a = ba.f = b

C

JAVA

43

Why Is Pointer Analysis Hard?

• Issue
• There are infinite many ways to express the same data.

44

Approximation to the Rescue

• Pointer analysis problem is undecidable
• We must sacrifice some combinations of

• Soundness, completeness, termination

• Many sound approximate algorithms for pointer analysis
• Differ in two key aspects

• How to abstract the heap
• How to abstract control-flow

45

May-alias Analysis vs. Must-alias Analysis

• May analysis assumes
• Aliasing that may occur during execution

• Must analysis assumes
• Aliasing that must occur during execution

P.foo = 1;

Q.foo = 2;

Y = P.foo + 3;

*May analysis

Assumption: Q may alias P

Analysis results:

 Case 1: Y = 4

 Case 2: Y = 5

*Must analysis

Assumption: Q must alias P

Analysis results: Y = 5

I will explain only the may-alias analysis

If (user.input = A) {

 P = Q;

}

46

Two Kinds of Pointers

• Heap-directed

• Stack-directed

p = new … or p = malloc(…)

int *p = NULL, v = 0;

p = &v
I will explain only the stack-directed pointer analysis

47

Pointer Analysis Algorithm

• Andersen’s Points-To Analysis
• Asymptotic performance is O(n3)
• Context-insensitive, flow-insensitive, path-insensitive
• Four collecting rules

• Referencing
• Copy
• Dereferencing (indirect) read
• Dereferencing (indirect) write

48

Context Sensitivity

• Consider calling context

int foo (int i) {

 return i;
}
…
y1 = foo (1);
y2 = foo (2);

With context sensitivity
• More precise
• We have one i per call site of foo
• y1 is 1
• y2 is 2

Without context sensitivity
• Less precise, but faster
• We have one i total
• y1 is {1, 2}
• y2 is {1, 2}

49

Flow Sensitivity

• Consider control flow and order of execution

x = 2;
y = x;
x = 3;

With flow sensitivity
• y is 2

Without flow sensitivity
• y is {2, 3}

50

Path Sensitivity

• Consider properties inferred from order of execution

x = 0;
if (P) {
 x = 1;
}
y = 2;

If (P) {
 y = x;
}

With path sensitivity
• y is {1, 2} at line 8
• Records that x = 0 when P = false
• Knows that line 8 is executed only if P = true

(i.e., x ≠ 0 at line 8)

Without path sensitivity
• y is {0, 1, 2} at line 8
• Less precise

1:
2:
3:
4:
5:
6:
7:
8:
9:

Line

51

Rule for Referencing

52

Rule for Copy

53

Rule for Indirect Read

54

Rule for Indirect Write

55

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

56

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

57

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

58

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

59

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

60

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

61

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

62

Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Imprecision in Andersen’s analysis: q never points to a in a concrete execution.

63

Static Analysis Tools

• LLVM
• To convert a program into a language-independent

intermediate representation (IR)
• Def-Use & Use-Def1)

• SVF2)

• Analysis tool for LLVM-based languages
• Pointer alias analysis
• Memory SSA form construction
• Data value-flow tracking

1) https://labs.engineering.asu.edu/mps-lab/resources/llvm-resources/llvm-def-use-use-def-chains/

2) https://github.com/SVF-tools/SVF

 https://github.com/SVF-tools/SVF-Teaching

64

• Intro

• Terminology

• Static Analysis

• Dynamic Analysis

Outline

65

Dynamic Analysis

• Gcov
• Measure code coverage in a program

• Dynamic symbolic execution
• Automatically generating tests to achieve higher levels of

coverage in a program

66

Gcov

<test.c>

a.out: An instrumented executable file

-ftest-coverage: Adds instructions for
counting the number of times individual lines
are executed

-fprofile-arcs: Branch instrumentation
records how frequently different paths are
taken through ‘if’ statements and other
conditionals.

67

Gcov

<test.c>

The gcov command produces an annotated version of the original source file,
with the file extension ‘.gcov’, containing counts of the number of times each
line was executed.

68

Gcov

<test.c>

69

Examples of Gcov Usages

• Why is Gcov Useful?
• Identify which code test cases cover
• Identify inputs to trigger a specific code snippet

• ArduPilot
• https://firmware.ardupilot.org/coverage/

• PX4
• https://coveralls.io/github/PX4/Firmware

70

Existing Approach

• Random Testing
• Generate random inputs
• Execute the program on those (concrete) inputs

void test_me (int x) {

 if (x == 94389) {

 // Buggy code

 }

}

Probability of finding the buggy code: 1/232 = 0.000000023%

71

Dynamic Symbolic Execution (DSE)

• DSE
• Pick random input values
• Keep track of both concrete values and symbolic constraints
• Use concrete values to simplify symbolic constraints

72

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

x = x0

y = y0

Pick random

input values

73

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

74

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

2*y0 != x0

75

DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

2*y0 != x0

Solve: 2*y0 == x0
Solution: x0 = 2, y0 = 1

76

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

x = x0

y = y0

Values obtained from

a constraint solver

77

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

78

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0

79

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 <= y0+10

Solve: (2*y0 == x0) and (x0 > y0+10)
Solution: x0 = 30, y0 = 15

80

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

x = x0

y = y0

Values obtained from

a constraint solver

81

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

82

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

83

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10

84

DSE example

1: int foo (int v) {

2: return 2*v;

3: }

4:

5: void test_me (int x, int y) {

6: int z = foo (y);

7:

8: if (z == x)

9: if (x > y+10)

10: // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10

Finally trigger the

buggy code!

- Concrete execution guided symbolic execution
- Symbolic execution guided generation of concrete

inputs (increases program code coverage)

85

Why is DSE Useful?

• Problem
• You want to develop a tool that automatically tests patched

code lines.
• ‘Test’ means that you need to trigger the code lines.
• How?

void test_me (int x, int y, int i, int j, int k, int l) {

 …

 if (k == l) {

 if (x == y && i == j) {

 // Patched code

 } } }

You can get inputs (e.g., x, y, and i), which trigger the
patched code, from a dynamic symbolic execution.

86

Symbolic Execution Tools

• KLEE1)

• Built on top of the LLVM compiler infrastructure

• angr2)

• Static and dynamic symbolic analysis for binaries

1) https://klee.github.io/tutorials/

2) https://angr.io/

https://klee.github.io/tutorials/
https://angr.io/

87

Summary

• Program analysis
• Is useful to understand behaviors of programs

• Find inputs that change the RV’s altitude state (Def-use)

• Find if statements that prevent divide-by-zero bugs (Def-use)

• Identify which code test cases cover (Gcov)

• Identify inputs to trigger a specific code snippet (DSE)

88

Summary

• What are the next steps?
• More understanding about program analysis

• https://www.youtube.com/watch?v=v0dKdfmziHs&t=1578s

• Dive into static analysis
• https://github.com/SVF-tools/SVF-Teaching

• Dive into symbolic execution
• https://klee.github.io/tutorials/

Thank you! Questions?

kim2956@purdue.edu

mailto:dxu@purdue.edu

	Slide 1: Program Analysis for IoT/CPS
	Slide 2: About me
	Slide 3: Outline
	Slide 4: Goal (1)
	Slide 5: Goal (2)
	Slide 6: Goal (3)
	Slide 7: What is Program Analysis
	Slide 8: Why should we automate this analysis?
	Slide 9: Existing Program Analysis Tools
	Slide 10: Static Analysis vs. Dynamic Analysis
	Slide 11: Static Analysis vs. Dynamic Analysis
	Slide 12: Outline
	Slide 13: Characterizing Program Analyses (1)
	Slide 14: Characterizing Program Analyses (1)
	Slide 15: Sound vs. Complete (1)
	Slide 16: Sound vs. Complete (2)
	Slide 17: Sound vs. Complete (3)
	Slide 18: Sound vs. Complete (4)
	Slide 19: Program Representations
	Slide 20: Control-Flow Graph
	Slide 21: Basic Block (1)
	Slide 22: Basic Block (2)
	Slide 23: Call Graph
	Slide 24: Outline
	Slide 25: Def-Use and Use-Def chains
	Slide 26: Def-Use and Use-Def chains
	Slide 27: Applications of Def-Use chains (1)
	Slide 28: Applications of Def-Use chains (2)
	Slide 29: Applications of Def-Use chains (3)
	Slide 30: Applications of Def-Use chains (3)
	Slide 31: Applications of Def-Use chains (3)
	Slide 32: Applications of Def-Use chains (3)
	Slide 33: Applications of Def-Use chains (3)
	Slide 34: Applications of Def-Use chains (3)
	Slide 35: Applications of Def-Use chains (3)
	Slide 36: Same Variable Name May Be Unrelated
	Slide 37: Static Single Assignment (SSA)
	Slide 38: Merge Points (SSA)
	Slide 39: Merge Points (SSA)
	Slide 40: Pointer Analysis
	Slide 41: Why do we want to know?
	Slide 42: Pointer Operations in C
	Slide 43: Why Is Pointer Analysis Hard?
	Slide 44: Approximation to the Rescue
	Slide 45: May-alias Analysis vs. Must-alias Analysis
	Slide 46: Two Kinds of Pointers
	Slide 47: Pointer Analysis Algorithm
	Slide 48: Context Sensitivity
	Slide 49: Flow Sensitivity
	Slide 50: Path Sensitivity
	Slide 51: Rule for Referencing
	Slide 52: Rule for Copy
	Slide 53: Rule for Indirect Read
	Slide 54: Rule for Indirect Write
	Slide 55: Stack-Based Pointer Analysis Example
	Slide 56: Stack-Based Pointer Analysis Example
	Slide 57: Stack-Based Pointer Analysis Example
	Slide 58: Stack-Based Pointer Analysis Example
	Slide 59: Stack-Based Pointer Analysis Example
	Slide 60: Stack-Based Pointer Analysis Example
	Slide 61: Stack-Based Pointer Analysis Example
	Slide 62: Stack-Based Pointer Analysis Example
	Slide 63: Static Analysis Tools
	Slide 64: Outline
	Slide 65: Dynamic Analysis
	Slide 66: Gcov
	Slide 67: Gcov
	Slide 68: Gcov
	Slide 69: Examples of Gcov Usages
	Slide 70: Existing Approach
	Slide 71: Dynamic Symbolic Execution (DSE)
	Slide 72: DSE example
	Slide 73: DSE example
	Slide 74: DSE example
	Slide 75: DSE example
	Slide 76: DSE example
	Slide 77: DSE example
	Slide 78: DSE example
	Slide 79: DSE example
	Slide 80: DSE example
	Slide 81: DSE example
	Slide 82: DSE example
	Slide 83: DSE example
	Slide 84: DSE example
	Slide 85: Why is DSE Useful?
	Slide 86: Symbolic Execution Tools
	Slide 87: Summary
	Slide 88: Summary
	Slide 89: Thank you! Questions?

