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• A PhD student in Purdue CS 
• Joined in 2018
• Working on how to apply static and dynamic analysis to 

robotic vehicle security
• Published papers into security conferences (NDSS, 

USENIX, ACSAC)

About me

Details of research topics:
1) Find bugs (fuzzing)
2) Automatically patch the bugs
3) Verify the fixed bugs
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• Intro 

• Terminology

• Static Analysis

• Dynamic Analysis

Outline
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1. Understanding terms in program analysis domain 
• Path-sensitive, flow-sensitive
• Intra-procedural, Inter-procedural
• Static single assignment (SSA), pointer analysis

Goal (1)

But why should we care about these terms?
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1. why should we care about these terms? 
• To leverage existing program analysis tools
• To understand security papers

Goal (2)

<A paragraph on a paper in NDSS 2021>

Can you understand 

this paragraph?
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2. Understanding how each technique is used for 
improving security in CPS 

Goal (3)

But why? Unsolved research question 
- Solve the research problems

- Publish papers

Apply program analysis 

to the unsolved problems
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• A process of automatically analyzing behaviors of a 
program

• Applications:
• Program understanding
• Compiler optimizations
• Bug finding

What is Program Analysis

Automatically generated report
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• Modern system software
• Extremely large and complex but error-prone

Why should we automate this analysis?

Memory 

Leaks

Buffer 

Overflows

Null 

Pointers

Use-After-Frees

Data-races

More  

Complex!

More  

Buggy!
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dynamic

static

commercialopen-source

gs™

SVF-tool

Flawfinder FindBu

Cppcheck

Splint
Semmle

Iroh.js sanitizers
Jalangi2

Trustwave

Existing Program Analysis Tools
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Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

•  + Pin-point bugs at source code level.
•  + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.



11

Static Analysis vs. Dynamic Analysis

Static Analysis

• Analyze a program without actually executing it – inspection of its source code by examining all

possible program paths

•  + Pin-point bugs at source code level.
•  + Catch bugs earlier during software development.

• - False alarms due to over-approximation.

• - Precise analysis has scalability issue for analyzing large size programs.

Dynamic Analysis

• Analyze a program at runtime – inspection of its running program by examining some

executable paths depending on specific test inputs

•  + Identify bugs at runtime (catch it when you observe it).
•  + Zero or very low false alarm rates.

• - Runtime overhead due to code instrumentation.

• - May miss bugs (false negative) due to under-approximation.
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• Intro 

• Terminology 

• Static Analysis

• Dynamic Analysis

Outline
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• Soundness
• If analysis A says that X is true, then X is true.

• Example
• If analysis A says that X is buggy, then X is buggy.

Characterizing Program Analyses (1)

True things

Things A says Trivially sound: Say nothing

True bugs

Bug detected 

by A 

Trivially sound: Say there is no 

buggy statement
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• Completeness
• If X is true, then analysis A says X is true.

• Example
• If X is buggy, then analysis A says X is buggy

Characterizing Program Analyses (1)

Things A says

True things Trivially complete: Say everything

Bugs A says

True bugs
Trivially complete: Say every 

statement is buggy
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Sound vs. Complete (1)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by 
analysis A
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Sound vs. Complete (2)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by 
analysis A
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Sound vs. Complete (3)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

No

No

Bug-free statement

Buggy statement

Program source code

Considered bugs by 
analysis A
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Sound vs. Complete (4)

• Is analysis A sound?
• Why? If analysis A says that X is buggy, then X is buggy.

• Is analysis A complete?
• Why? If X is buggy, then analysis A says X is buggy.

Yes

Yes

Bug-free statement

Buggy statement

Program source code

Considered bugs by 
analysis A
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Program Representations

• Original representations of programs
• Source code
• Binaries

• They are hard for machines to analyze

• Software is translated into certain representations 
before analyses are applied.
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Control-Flow Graph

• Directed graph
• Edge: summarizing flow of graph
• Node: a statement in a program

Labelled edge: “true”/”false” 

for conditional jumps

Unlabeled edge: 

unconditional jump

Back-edge: Loop



21

Basic Block (1)

• Definition
• Group statements without intervening control flow
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Basic Block (2)

• Definition
• Group statements without intervening control flow
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Call Graph

• Node
• Represents a function

• Edge
• Represents a function invocation
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• Intro 

• Terminology 

• Static Analysis

• Dynamic Analysis

Outline
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Def-Use and Use-Def chains

• Dataflow analysis problem
• Find all sites where a variable X is used

• (e.g., y = X;)

• Find all sites where that variable X was last defined
• (e.g., X = 1;)
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Def-Use and Use-Def chains

• Def-Use (DU) chains
• Link each def (assigns-to) of a variable to all uses

• Use-Def (UD) chains
• Link each use of a variable to its def

<Def-Use chain>
<Use-Def chain>
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Applications of Def-Use chains (1)

• Workflow of robotic vehicles (RV)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical 

space Sensor data 

gathering



Commands 

to actuators



Control 

algorithm



Decreasing motors’ 

speed to lower altitude

User 

commands

Environment 

factors

For control 

algorithm

Parameters

Three types 

of inputs

≈ 1,000

≈ 100

≈ 300

Challenging issue: Huge input space
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Applications of Def-Use chains (2)

• Problem 1:
• You need to find inputs that change the RV’s altitude state.

configuration 

parameter
①

②

③

[definition | write access | read access]

(1) [ground_temp | line 1 | line 2]

(2) [_user_temp | line 2 | line 315]

(3) [temp | line 315 | line 320]

(4) [altitude | line 320 | … ]

①

②

③

Result: “TEMP” configuration parameter 

will change the RV’s altitude

<Def-Use chain>

④
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Applications of Def-Use chains (3)

• Problem 2:
• You need to develop an automatic program repair tool.
• It automatically fixes divide-by-zero bugs.

If PSC_POSZ_P = 0  and RTL 

flight mode is turn on, the 

arithmetic exception happens
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Applications of Def-Use chains (3)

• Two cases:
1) There is no any “if check statement” to prevent the divide-by-

zero.
2) There is an “if statement” to prevent such error. But, the check 

statement is incorrect.

if (_p_pos_z.KP() <= 0.0f) {

 return;

}

_accel_z_cms / _p_pos_z.KP();

…

_accel_z_cms / _p_pos_z.KP();

<Case 1>

<Case 2>

PSC_POSZ_P = 0.00000001 still 

leads to the divide-by-zero.
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Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of 

the instruction

<Backtracking the def-use chain 
of _p_pos_z >

Def-use of 

_p_pos_z 



32

Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of 

the instruction

<Backtracking the def-use chain 
of _p_pos_z >

Def-use of 

_p_pos_z 
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Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of 

the instruction

<Backtracking the def-use chain 
of _p_pos_z >

Def-use of 

_p_pos_z 
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Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of 

the instruction

<Backtracking the def-use chain 
of _p_pos_z >

Def-use of 

_p_pos_z 
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Applications of Def-Use chains (3)

• Backtracking def-use chains
• To find an “if statement” preventing the divide-by-zero.

Variable
Operand 1 Operand 2

String Address

%_p_pos_z 0x5d3ff88 0x5d3e4b8 0x1470480

%call10 0x5d40060 0x5d3ff88 0x1e2c658

%call11 0x5d40150 0x5d40060 0x19f2558

%11 0x5d3f138 0x5d40150 -

%cmp 0x5d40220 0x5d3f138 0x1501410

Instruction

Operands of 

the instruction

<Backtracking the def-use chain 
of _p_pos_z >

Result: This code snippet 

compares _p_pos_z with 0!
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Same Variable Name May Be Unrelated

• The values in reused storage locations
• May be probably independent

• Problem of this situation
• Unrelated uses of same variable are mixed together

• This complicates program analysis

X = A + 1

Y = X + B

X = F + 7

C = X + 1

F = 2 F = 3

X is independent from X

true false
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Static Single Assignment (SSA)

• Idea
• Each variable be assigned exactly once, and every variable 

be defined before it is used

• Why?
• Explicitly express different definitions of variables

Original SSA

[SSA]

if (a2 < c1) {

    ….

}

[Original]

if (a < c) {

    ….

}
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Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

a = 0

b = …

if b < 4

a = b

c = a + b

Original

a1 = 0

b1 = …

if b1 < 4

a2 = b1

???

SSA

true

false

true

false
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Merge Points (SSA)

• Issue
• How to handle merge points in the flowgraph?

• Solution
• Φ-function

a = 0

b = …

if b < 4

a = b

c = a + b

Original a1 = 0

b1 = …

if b1 < 4

a2 = b1

a3 = Φ(a1,a2)

c1 = a3 + b1

SSA

a3 is assigned either 

a1 or a2 depending on 

which control path 

was used to reach the 

Φ function

true

false

true

false
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Pointer Analysis

• What memory locations can a pointer expression refer to?

• Alias analysis
• When do two pointer expressions refer to the same storage 

location?

int X = 99;

P = &X;

Q = P;

*P and *Q alias

99

XP

Q



41

Why do we want to know?

• Pointer analysis tells us what memory locations code uses 
or modifies

• Useful in many analyses

E.g.,

*P = A + B;

 Y = A + B;

Let’s assume that A+B is 10. 

Then, can we do that?

*P = 10;

Y = 10;

5

B

P 5

A

If *P aliases A or B, then the 

second computation of A+B 

is not redundant
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Pointer Operations in C

• Recall C pointer semantics
• &a: Address of a
• *a: Object pointed to by a
• *(&a) = a: Converse operators

a = &b

Referencing
• Create location

int *b = &c

a = *b

Dereferencing 
read

• Access location
• Indirect read

a = b

Aliasing
• Copy pointer

int *a = &c

*a = b

Dereferencing 
write

• Access location
• Indirect write

a = new A() a = b.f a = ba.f = b

C

JAVA
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Why Is Pointer Analysis Hard?

• Issue
• There are infinite many ways to express the same data.
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Approximation to the Rescue

• Pointer analysis problem is undecidable
• We must sacrifice some combinations of

• Soundness, completeness, termination

• Many sound approximate algorithms for pointer analysis
• Differ in two key aspects

• How to abstract the heap
• How to abstract control-flow
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May-alias Analysis vs. Must-alias Analysis

• May analysis assumes
• Aliasing that may occur during execution

• Must analysis assumes
• Aliasing that must occur during execution

P.foo = 1;

Q.foo = 2;

Y = P.foo + 3;

*May analysis

Assumption: Q may alias P

Analysis results:

    Case 1: Y = 4

    Case 2: Y = 5

*Must analysis

Assumption: Q must alias P

Analysis results: Y = 5

I will explain only the may-alias analysis

If (user.input = A) {

    P = Q;

}
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Two Kinds of Pointers

• Heap-directed

• Stack-directed

p = new … or p = malloc(…)

int *p = NULL, v = 0;

p = &v
I will explain only the stack-directed pointer analysis
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Pointer Analysis Algorithm

• Andersen’s Points-To Analysis
• Asymptotic performance is O(n3)
• Context-insensitive, flow-insensitive, path-insensitive
• Four collecting rules

• Referencing
• Copy
• Dereferencing (indirect) read
• Dereferencing (indirect) write
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Context Sensitivity

• Consider calling context

int foo (int i) {

    return i;
}
…
y1 = foo (1);
y2 = foo (2);

With context sensitivity
• More precise
• We have one i per call site of foo
• y1 is 1
• y2 is 2

Without context sensitivity
• Less precise, but faster
• We have one i total
• y1 is {1, 2}
• y2 is {1, 2}
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Flow Sensitivity

• Consider control flow and order of execution

x = 2;
y = x;
x = 3;

With flow sensitivity
• y is 2

Without flow sensitivity
• y is {2, 3}
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Path Sensitivity

• Consider properties inferred from order of execution

x = 0;
if (P) {
    x = 1;
}
y = 2;

If (P) {
    y = x;
}

With path sensitivity
• y is {1, 2} at line 8
• Records that x = 0 when P = false
• Knows that line 8 is executed only if P = true 

(i.e., x ≠ 0 at line 8)

Without path sensitivity
• y is {0, 1, 2} at line 8
• Less precise

1:
2:
3:
4:
5:
6:
7:
8:
9:

Line



51

Rule for Referencing 
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Rule for Copy
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Rule for Indirect Read
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Rule for Indirect Write
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;
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Stack-Based Pointer Analysis Example

p = &a;

q = &b;

p = q;

r = &p;

*r = &c;

q = *r;

Imprecision in Andersen’s analysis: q never points to a in a concrete execution.
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Static Analysis Tools

• LLVM
• To convert a program into a language-independent 

intermediate representation (IR)
• Def-Use & Use-Def1)

• SVF2)

• Analysis tool for LLVM-based languages
• Pointer alias analysis
• Memory SSA form construction
• Data value-flow tracking

1)  https://labs.engineering.asu.edu/mps-lab/resources/llvm-resources/llvm-def-use-use-def-chains/

2)  https://github.com/SVF-tools/SVF

     https://github.com/SVF-tools/SVF-Teaching 
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• Intro 

• Terminology 

• Static Analysis

• Dynamic Analysis

Outline
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Dynamic Analysis

• Gcov
• Measure code coverage in a program

• Dynamic symbolic execution
• Automatically generating tests to achieve higher levels of 

coverage in a program
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Gcov

<test.c>

a.out: An instrumented executable file

-ftest-coverage: Adds instructions for 
counting the number of times individual lines 
are executed

-fprofile-arcs: Branch instrumentation 
records how frequently different paths are 
taken through ‘if’ statements and other 
conditionals.
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Gcov

<test.c>

The gcov command produces an annotated version of the original source file, 
with the file extension ‘.gcov’, containing counts of the number of times each 
line was executed.
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Gcov

<test.c>
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Examples of Gcov Usages

• Why is Gcov Useful?
• Identify which code test cases cover
• Identify inputs to trigger a specific code snippet 

• ArduPilot
• https://firmware.ardupilot.org/coverage/

• PX4
• https://coveralls.io/github/PX4/Firmware
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Existing Approach

• Random Testing
• Generate random inputs
• Execute the program on those (concrete) inputs

void test_me (int x) {

    

    if (x == 94389) {

        // Buggy code

    }

}

Probability of finding the buggy code: 1/232 = 0.000000023%
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Dynamic Symbolic Execution (DSE)

• DSE
• Pick random input values
• Keep track of both concrete values and symbolic constraints
• Use concrete values to simplify symbolic constraints
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

x = x0

y = y0

Pick random 

input values
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DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }
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DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

2*y0 != x0
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DSE example

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 22

y = 7

z = 14

x = x0

y = y0

z = 2*y0

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

2*y0 != x0

Solve: 2*y0 == x0 
Solution: x0 = 2, y0 = 1
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

x = x0

y = y0

Values obtained from 

a constraint solver



77

DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0



78

DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 2

y = 1

z = 2

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 <= y0+10

Solve: (2*y0 == x0) and (x0 > y0+10) 
Solution: x0 = 30, y0 = 15
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

x = x0

y = y0

Values obtained from 

a constraint solver
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0
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DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10



84

DSE example

1: int foo (int v) {

2:    return 2*v;

3: }

4: 

5: void test_me (int x, int y) {

6:    int z = foo (y);

7:

8:    if (z == x)

9:        if (x > y+10)

10:           // Buggy code

11: }

Concrete

execution

Symbolic

execution

Concrete

state

Symbolic

state

Path

condition

x = 30

y = 15

z = 30

x = x0

y = y0

z = 2*y0

2*y0 == x0

x0 > y0+10

Finally trigger the 

buggy code!

- Concrete execution guided symbolic execution
- Symbolic execution guided generation of concrete 

inputs (increases program code coverage)
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Why is DSE Useful?

• Problem
• You want to develop a tool that automatically tests patched 

code lines.
• ‘Test’ means that you need to trigger the code lines.
• How?

void test_me (int x, int y, int i, int j, int k, int l) {

    …

    if (k == l) {

        if (x == y && i == j) {

            // Patched code

        }  }  }

You can get inputs (e.g., x, y, and i), which trigger the 
patched code, from a dynamic symbolic execution.
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Symbolic Execution Tools

• KLEE1)

• Built on top of the LLVM compiler infrastructure

• angr2)

• Static and dynamic symbolic analysis for binaries

1) https://klee.github.io/tutorials/

2) https://angr.io/

https://klee.github.io/tutorials/
https://angr.io/
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Summary

• Program analysis
• Is useful to understand behaviors of programs

• Find inputs that change the RV’s altitude state (Def-use) 

• Find if statements that prevent divide-by-zero bugs (Def-use)

• Identify which code test cases cover (Gcov)

• Identify inputs to trigger a specific code snippet (DSE)
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Summary

• What are the next steps?
• More understanding about program analysis

• https://www.youtube.com/watch?v=v0dKdfmziHs&t=1578s

• Dive into static analysis
• https://github.com/SVF-tools/SVF-Teaching 

• Dive into symbolic execution
• https://klee.github.io/tutorials/



Thank you! Questions?

 

kim2956@purdue.edu

mailto:dxu@purdue.edu
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