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Abstract—Physical sensor attacks against robotic vehicles (RV)
have become a serious concern due to their prevalence and
potential physical threat. However, RV software developers often
do not deploy appropriate countermeasures. This hesitance
stems from their belief that attackers face substantial chal-
lenges when conducting sensor attacks, e.g., nullifying sensor
redundancy in hardware and circumventing sensor filters in
software. Yet, we discover that attackers can overcome the
challenges by fulfilling specific prerequisites and finely tuning
attack parameters. The misconceptions that the developers have
arisen from a lack of study regarding the level of difficulty
attackers face in successfully achieving their attack goals, which
we call “attack hardness”.

In this paper, we examine the hardness of 12 well-known
sensor attacks. We first identify the prerequisites required
to conduct the attacks successfully. We then quantify the
hardness of each attack as how frequent the prerequisites
enabling a specific attack are in the real world. To automate
this analysis, we introduce RVPROBER, an attack prerequisite
analysis framework. RVPROBER discovered that the 12 sensor
attacks require, on average, 4.4 prerequisites, highlighting
that previous literature has often missed important details
required to perform these attacks. By satisfying the identified
prerequisites and tuning attack parameters, we increased the
number of successful attacks from 6 to 11. Moreover, our
analysis showed that an average of 57.08% of actual RV users
are vulnerable to sensor attacks. Finally, starting from the
identified prerequisites, we analyzed the reasons behind the
success of each attack and found previously-unknown root
causes, such as design flaws in the RV software’s fail-safe logic.

1. Introduction

Attacks affecting robotic vehicles (RVs) have become a
serious concern in recent years due to their prevalence and
their potentially-severe consequences (ranging from destroy-
ing physical infrastructure to causing human injuries). Many
of these attacks fall into the category of “physical sensor
attacks”, which focus on tampering with the mechanisms
an RV uses to perceive its operating environment [22], [42],
[43], [82], [85], [86], [88], [89], [93], [97]. For instance,
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GPS spoofing [83], [86], [97] aims to deceive an RV’s GPS
receiver by sending fake GPS signals, potentially causing it
to lose position control and crash, resulting in severe damage.

Unfortunately, RV control software remains vulnerable
to physical sensor attacks. In fact, a preliminary analysis we
performed on the most popular open-source RV software
(ArduPilot [4], PX4 [66], and Paparazzi [64]), discovered that
RV software developers do not deploy any countermeasures
intended to prevent this kind of attacks.

Additionally, throughout our communication with RV
software developers (detailed in Section 2), we observed
a lack of motivation to defeat sensor attacks. In fact, they
believe that these attacks are not practical since they require
attackers to overcome hard challenges, such as nullifying
sensor redundancy in hardware and circumventing sensor
filters in software. Thus, they hold the view that it is hard for
the attackers to replicate the attacks in real world scenarios.

Indeed, attempting to replicate these attacks is challeng-
ing, and in a preliminary study we also failed to replicate six
out of 12 well-known sensor attacks. However, as we will
show, a more in-depth analysis of these attacks reveals that
the attackers can use these attacks in real-world scenarios
by fulfilling specific attack prerequisites and finely tuning
attack parameters. Particularly, our investigation reveals that
successful sensor attacks require prerequisites in hardware,
software, and environmental configuration categories. Ad-
ditionally, we find that sensor attacks do not function on
a “plug-and-play” basis; instead, they demand meticulous
tuning of attack parameters, such as the intensity and duration
of spoofed signals, to achieve attack goals.

Fundamentally, the misunderstanding that the developers
have arises from a lack of “attack hardness” study. Attack
hardness refers to a quantification of the difficulty involved
in executing an attack. Specifically, for a given sensor attack,
it quantifies the attack hardness as the likelihood that these
prerequisites are met among a representative sample of real-
world RV usage scenarios.

Identifying prerequisites and attack hardness enables de-
velopers to successfully replicate the attacks, identify the RV
configurations vulnerable to such attacks, and understand the
attack impact and prevalence. In turn, these capabilities allow



developers to develop countermeasures (i.e., code patches
and/or hardware modifications) and test them, prioritizing
fixes for the most impactful attack. However, current research
literature [22], [42], [43], [82], [83] does not provide a
complete list of required prerequisites, and there currently
exists no automated tool that identifies such prerequisites
and leverages them to quantify the attack hardness.

In this paper, motivated by the lack of effective ap-
proaches to understanding the hardness of attacks, we study
the hardness of 12 well-known physical sensor attacks.
In particular, we first identify the prerequisites required
to conduct the attacks successfully. We then quantify the
hardness of each attack as how frequent the prerequisites
enabling a specific attack are in the real world.

To automate this process, we develop RVPROBER, an
attack prerequisite analysis framework. To simulate realistic
sensor attacks while considering various attack parameters,
RVPROBER takes, as input, sensor values compromised
under the attack. Then, it mutates the sensor values based
on four different attack parameters (intensity, duration,
start time, and attack algorithm). To address the high-
dimensional “search spaces” involving the attack prerequi-
sites, RVPROBER reduces the spaces via dedicated static
and dynamic analyses.

Using RVPROBER, we discover that the 12 physical
sensor attacks require, on average, 4.4 different types of
prerequisites, many of them not reported in the research
papers presenting them. We share the identified prerequisites
with the authors of research papers proposing the 12 physical
sensor attacks [22], [42], [43], [82], [83]. Thus, we confirm
that our findings are generally in line with the authors’ obser-
vations. Additionally, by ensuring the identified prerequisites
and attack parameters are met, we increase the number of
successful attacks from 6 to 11. To quantify the real-world
hardness of conducting the attacks, we verify whether the
required prerequisites are satisfied by the conditions and the
configurations of RVs operated in real-world scenarios. To
do so, we collect a total of 30,059 real RV logs from actual
users of two popular RV control software (ArduPilot [4]
and PX4 [66]). As a result, we discover that physical sensor
attacks are possible, on average, in 57.08% of real-world
RV configurations.

Finally, we use our ability to successfully replicate
attacks to study in-depth their root causes. This study reveals
previously-unknown root causes of successful attacks. In
particular, we found four of these attacks are possible due
to design flaws in the RV control software’s fail-safe logic.

Overall, our findings shed light on the feasibility (or un-
feasibility) of physical sensor attacks against RVs, and they
will help current and future RV control software developers
to better understand these attacks, allowing them to introduce,
when needed, effective countermeasures against them.

In summary, we make the following contributions:

« Discovery of Attack Difficulty. Our research high-
lights the difficulty of conducting and studying sensor
attacks due to the prerequisites required for success-
fully conducting the attacks.

« Attack Hardness Analysis Tool. RVPROBER con-
ducts realistic sensor attacks using simulations. Each
simulation tests distinct prerequisites. Based on the
prerequisites found by RVPROBER, we increase the
number of successful attacks from 6 to 11. The
identified prerequisites not only help developers
understand the impact and prevalence of these attacks,
but also provide the insights needed to devise and
test countermeasures.

o Evaluation with Real-world Data. We analyze
how frequently RV configurations used by actual
users satisfy the required prerequisites by analyzing
a total of 30,059 RV logs. Our analysis shows that an
average of 57.08% of actual RV users are vulnerable
to the attacks.

o Root Cause Analysis. By analyzing their prerequi-
sites, we identify the root causes enabling the success-
ful attacks. This analysis reveals that many attacks
are possible due to previously-unknown design flaws
in RV software’s fail-safe algorithms.

We make RVPROBER and experimental data publicly
available (https://github.com/purseclab/RVProber).

Ethical Considerations and Responsible Disclosure. In the
analysis of public RV logs of actual users, we analyze the
publicly available RV logs and do not collect any personally
identifiable information (PII). Additionally, we responsibly
disclosed the physical sensor attacks and the discovered
design flaws to the corresponding RV software developers.

2. Background

Sensor Fusion. Each RV control software can leverage a
different sensor fusion algorithm. Here, we explain sensor
fusion commonly used in popular open-source RV control
software (ArduPilot [4], PX4 [66], and Paparazzi [64]).
Sensor fusion aims to improve the accuracy and reliability
of estimating an RV’s physical states (e.g., position). It
comprises three primary components: sensors, sensor filters,
and sensor fusion algorithms (e.g., EKFs), as shown in Fig-
ure 1. Most RVs are equipped with redundant homogeneous
and heterogeneous sensors to address the randomness of
sensor readings (e.g., disturbances and failures). For example,
an RV is equipped with three redundant gyroscopes, three
accelerometers, and two magnetometers to measure the RV’s
attitude (roll, pitch, and yaw angles), angular velocity, and
position (@ in Figure 1). The two GNSS receivers can also
measure the RV’s attitude (yaw angles) [35] and are not
the only sensors that measure the RV’s positions. In fact,
RV control software leverages all sensors (except for the
barometer and rangefinder) to determine the RV’s latitude and
longitude coordinates. RV control software next inputs the
measured sensor values into the sensor filters, e.g., low-pass
and harmonic notch filters [11], [76] (@). Lastly, RV control
software simultaneously feeds the filtered sensor values to
multiple extended Kalman filters (EKFs) (@).

The number of EKFs is equal to the number of redundant
IMU sensors (three gyroscopes and accelerometers in Fig-
ure 1). Each EKF takes, as input, a different instance of the


https://github.com/purseclab/RVProber

M<Sensors>
@ for attitude & angular velocity

Y for {lat, lon} position LR
dfor altitude | Barometer (2) ¥

’m‘ Rangefinder (1) ¥
[ Accelerometer 3)%]  GNSS )©*¥| TekF 1| H |

Magnetometer (Z)Q‘ Optical flow (1) “\*" é, > >

Sensor filters
(low-pass and
harmonic notch)

* represents the number of redundant sensors
(O denotes attitude, angular velocity, and position estimated by EKFs

Figure 1: Illustration of different types of sensors (@), sensor
filters (@), and sensor fusion processes on RVs (@).

TABLE 1: Illustration of the EKF switching [23]

[ | EKF-1 | EKF-2 [ EKF-3 |

Gyroscope (Gyro) Gyro 1 Gyro 2 Gyro 3
Accelerometer (Acc) Acc 1 Acc 2 Acc 3
Magnetometer (Mag) Mag 1 Mag 2 Mag 1
Barometer (Bar) Bar 1 Bar 2 Bar 1
Rangefinder (Ran) Ran 1 Ran 1 Ran 1
GNSS GNSS 1 GNSS 2 GNSS 1

Optical flow (Opt) Opt 1 Opt 1 Opt 1

sensor, as shown in Table 1. For example, EKF-2 uses the
second instance of a gyroscope, accelerometer, magnetometer,
barometer, and GNSS, and the first instance of a rangefinder
and optical flow sensors. Each EKF then estimates the RV’s
current physical states separately. RV software uses only one
of the EKFs’ outputs rather than combining them.

EKF Switching. This sensor fusion design allows excluding
a sensor that returns erroneous measurements. Particularly,
the RV control software calculates each EKF’s error score by
considering differences between the EKF’s estimation and
the actual sensor measurement. It then switches the primary
EKF to the secondary EKF (EKF-1 to EKF-2) if the primary
EKF shows the poorest error score among EKFs, i.e., the
RV leverages the second instance of the gyroscope sensor
rather than the first and third ones [23].

Attacks. Physical sensor attacks remotely inject/jam signals
to disrupt sensors attached to RVs, as shown in Table 2.
Throughout the paper, we consistently use the term “attacks”
to refer to these physical sensor attacks.

GNSS receivers' are vulnerable to spoofing and jamming
attacks because (i) the strength of legitimate GNSS signals is
extremely weak (-125 dBm to -130 dBm in open space) and
(i) GNSS receivers do not leverage authentication methods.
Attackers deceive GNSS receivers by either spoofing fake
signals that are stronger than legitimate ones or by jamming
legitimate signals [83], [86], [97]. Such attacks may lead to
unstable position control and a physical crash into an obstacle.
To address natural disturbances in outdoor spaces, GNSS
receivers parse and track multiple types of satellite signals
instead of relying solely on one type (e.g., GPS). Further, the
GNSS receivers detect drastic signal level changes (e.g., noise
level [38], [41]) and return warning messages, e€.g., U-
blox series raise the warnings in UBX-NAV-STATUS [90],
[91]. Researchers have proposed a defense method that

1. GNSS includes any constellation systems such as GPS, Galileo, and
GLONASS. In contrast, GPS denotes only the USA’s positioning system.

TABLE 2: Physical sensor attacks and goals of an adversary

Attack Target Attack’s goals

(S): Spoofing Sensor Mission Unstable Physical

(J): Jamming failure | attitude/position crash
(S) GNSS signals [83] v v v
(J) GNSS signals [83] GNSS v X X

(S) Acoustic noises Gyroscope v v v

[43], [85], [88], [89], [93] | Accelerometer
(S) Magnetic fields [82] Magnetometer v v v
(S) Magnetic fields [42] SPI/12C buses v v v
(S) Images on floors [22] Optical-flow v v v

leverages angle-of-arrival measured by multi-GNSS receivers
or antenna-array [49]. Yet, this method is rarely adopted due
to the required additional hardware. While Galileo supports
authenticated navigation messages (Galileo’s OSNMA [28]),
Motallebighomi et al. show that attackers can still spoof
the GNSS receivers without modifying these authenticated
messages [56].

Researchers have demonstrated that acoustic noises can
produce resonance inside gyroscope and accelerometer sen-
sors (i.e., IMU) [43], [85], [88], [89], [93]. This can lead
to unstable attitude control and, eventually, a crash on the
ground. In response to this attack, researchers have proposed
sensor filter algorithms to be implemented either within
or outside the sensors [43], [94]. Additionally, fiber-optic
gyroscopes have emerged as a promising alternative due to
their inherent immunity to resonance-based attacks [19], [48].
Yet, all of these defense methods are not currently adopted
by the developers due to the required hardware modifications,
processing overhead, and/or increased costs.

Electromagnetic interference (EMI) can disturb either
magnetometers [82] or data on SPI and I2C buses [42],
i.e., corrupting all sensors on an RV. Such attacks lead
to physical crashes due to the corrupted sensor readings.
Unfortunately, RV developers have implemented EMI filters
(e.g., L-C, Pi, T filters) [44] in the hardware level for
only power lines (i.e., battery) [30]. Thus, sensors and
SPI/T2C buses are still vulnerable to EMI attacks. To tackle
natural magnetic anomalies, some RV developers attach EMI
shielding (e.g., Mu-metal) to RVs [25]. Yet, as Jang et al.
discussed [42], complete shielding of flight controller boards
is not feasible due to the potential for heat buildup, which
can degrade the performance of circuit components.

Lastly, attackers can inject images on floors via laser
beams [22], causing an RV’s optical flow sensor to calculate
fake motions. This attack results in unstable position control
and potentially causes a crash into an obstacle. To address
this attack, researchers have developed algorithms to filter
out injected images [22], [29]. Despite the availability of
defense algorithms against this attack, RV developers have
yet to incorporate these methods into their software. This
reluctance stems from the inherent limitations of existing
defense algorithms, which assume that attackers can only
manipulate a portion of the field of view. This limitation
makes these defenses vulnerable to attacks that inject spoofed
images into the entire field of view.

Reasons for Not Using Countermeasures. We could not find
discussions regarding the attacks except for GNSS jamming
in GitHub repositories and developer community websites [6],



TABLE 3: 12 attacks (six different types of attacks with two
different levels of adversary capabilities)

Attack Adver_i_a y
(S): Spoofing Capabilities
’ . Attacks demonstrated
(J): Jamming X Worst-case attacks
in the papers
(S) GNSS signals [83] GPS signals GNSS signals
(J) GNSS signals [83] Intermittently jam Fully jam
(S) Acoustic noises One IMU All IMUs

[43], [85], [88], [89], [93]
(S) Magnetic fields [82]
(S) Magnetic fields [42]
(S) Images on floors [22]

One mag sensor
Partial corruption
Partial field of view

All mag sensors
Full corruption
Entire field of view

[68]. Thus, we made responsible disclosure, and in this regard,
we reported the 10 well-known attacks (except for two GNSS
jamming attacks, as the developers already discussed) to the
developers of ArduPilot [4], PX4 [66], and Paparazzi [64].
We received two distinct types of replies from the
developers. Firstly, they believe that the attacks can be
countered by different hardware and software configurations
(e.g., the latest flight control boards and finely tuned sensor
filters). Thus, they hold the belief that the attacks do not
pose genuine threats. Secondly, the developers believe that
addressing the attacks falls within the purview of hardware
designers rather than RV software developers, as these attacks
start at the sensor hardware. Yet, we will detail that the beliefs
held by the developers are misconceptions in Section 9.

3. Threat Model and Scope

Our analysis focuses on six different types of remote
attacks on RVs that disrupt an RV’s sensors and result in a
mission failure, unstable attitude/position control, or physical
crash, as shown in Table 2. Within our scope, we include
attacks directed toward RVs that have been documented
and reported in the research literature. We assume attackers
cannot inject messages between the RV and the ground
control station (GCS). This is because RVs can use network
packet-level authentication and encryption according to their
communication protocol and hardware specifications [54],
[55], [81]. Thus, we exclude remotely exploiting bugs that
corrupt sensor values stored in the RV’s memory.

Adversary’s Capabilities. The majority of research litera-
ture [22], [42], [43], [82], [83] leverages two distinct levels
of an adversary’s capabilities: (i) attacks demonstrated in
research papers and (ii) worst-case attacks. Thus, we also
consider these two levels of an adversary’s capabilities.
Table 3 shows 12 attacks classified by these two capabilities.

The term “demonstrated attacks” denotes attacks that
have been substantiated by conducting real-world experi-
ments in the research literature. For instance, acoustic noise
attacks demonstrated in the papers [43], [85], [88], [89], [93]
inject sound at a specific frequency and compromise one
of the IMUs on an RV. To compromise all IMUs, attackers
need to inject sound at multiple frequencies because each
IMU may have a different resonance frequency. Yet, the
acoustic signals at multiple frequencies suffer from sound
wave interference (i.e., phase shifts and inversion of the
signal polarity [18], [87]); thus, the demonstrated attacks do
not simultaneously disturb multiple IMUs.

receiver

(a) Attack location

(b) Unsuccessful attack

(c) Successful attack

Figure 2: (a) The location where we performed GPS spoofing.
The green line represents how much the location deviates
from the correct position (in the center of the circle).

On the contrary, the term “worst-case attacks” denotes the
most powerful adversary’s capabilities, which are not verified
by conducting real-world experiments due to their hardware
and software limitations. We assume that the worst-case
attacks overcome the challenges of conducting attacks. Thus,
such attacks can simultaneously and completely compromise
all of the homogeneous sensors. For instance, the worst-case
attacks inject sound at multiple frequencies at the same time
and succeed in disturbing all IMUs of an RV.

Adversary’s Knowledge. We consider two distinct adversary
knowledge models: black-box and white-box attacks. Firstly,
the black-box attacks lack knowledge about a target RV’s
software, hardware, and environmental configurations. Sec-
ondly, the white-box attacks have such knowledge about the
target RV before they conduct attacks. Thus, the white-box
attacks can dynamically select an optimal attack from the
12 available attacks and their associated parameters, thereby
increasing the likelihood of achieving the attack goals.

4. Motivating Example

We demonstrate the importance of understanding attack
hardness by showcasing GPS spoofing that aims to control
RVs. To conduct this attack, we follow the attack steps
in [97] for RVs in an outdoor environment (See Appendix B
for details). This attack only requires affordable commodity
hardware, while open-source software is readily available
to execute the required attack steps. To address safety and
ethical concerns, we ensure that there were no man-made
structures, vehicles, and people within 30 meters around the
experiment location, as shown in Figure 2-(a), and we used
10 dBm low-power signals (so that the signal can reach, at
most, targets within a 15-meter radius).

We fail to fully observe the reported effects of the GPS
spoofing attack. As shown in Figure 2-(b), the location
perceived by the RV does not deviate from the real RV’s
location while performing the attack.

Reasons for Failure. With further investigation, we realized
there were two main reasons why the attack failed. In other
words, this attack requires two prerequisites. First, the attack
is only possible under an RV’s specific “sensor configuration”.
Specifically, this attack is only possible against RVs using
a GPS receiver instead of a GNSS receiver. Unlike GPS
receivers, GNSS receivers use data from multiple satellite
constellations (e.g., GPS, Galileo, GLONASS, BeiDou, and
SBAS). For this reason, the attempted attack, which only
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Figure 3: A simplified attack-step model illustrates the
propagation of acoustic noise injection attacks within RVs.

affects the signal coming from the GPS satellite constellation,
is not possible’. Second, the RV control software leverages
sensor fusion algorithms, as explained in Section 2. Even
though the GNSS receiver incorrectly measures its positions
(i.e., measuring false velocity values), the RV’s IMUs still
correctly estimate the RV’s current velocity.

Attack Based on the Identified Attack Prerequisites. Tak-
ing into account the discovered prerequisites, we change our
experiment setup as follows: (1) we replace the u-blox MSN
receiver with the u-blox M6 receiver, because the u-blox M6
receiver parses only GPS signals; and (2) we change PX4’s
configuration parameters (EKF2_AID_MASK, CAL_GYRO_PRIO,
and CAL_ACC_PRIO) to decrease the weight given to data
coming from IMU sensors and increase the weight of GPS
data. After these modifications, we successfully deceive the
positions estimated by the RV, as shown in Figure 2-(c).

Quantified Real-world Hardness. We can use the knowl-
edge about the required prerequisites to estimate how frequent
they are to be true in real-world scenarios. To do so, we
collect 30,059 real RV logs from actual users of two popular
RV software [4], [66]. We discover that in 18,271 out of the
30,059 RV logs (60.8%), these two prerequisites are true.
As we will show in Section 9, RVPROBER helps us
identify the required prerequisites for attacks. In turn, the
identified prerequisites to understand how likely an attack is
(consulting real-world RV logs, as explained) and conducting
the attack help developers test their software and patch it.

5. Attack Prerequisites

We first introduce our methodology to identify attack
prerequisites. Then, we provide an in-depth explanation of
the prerequisites that are required for successful attacks.

Identification of Attack Prerequisites. To discern compo-
nents of RV hardware and software that amplify or mitigate
the impacts of the 12 considered attacks, we leverage a
single “attack-step model” using hierarchical design modeling
(HdM) [31], as shown in Figure 3. Each component is
recursively decomposed into subsystems (Figure 3-@). With
this model, we abstract the paths through which an attack
propagates across both cyber and physical components and
its interactions with the environment.

The attack-step model exhibits generality across the most
popular RV hardware and software platforms. Specifically,

2. Attackers can first jam legitimate GNSS signals and then spoof fake
GPS signals. Yet, we note that we conduct GPS spoofing without the help
of jamming according to steps reported in [97]

identifying hardware components within the attack-step
model involves manually analyzing the most widely used
open-standard flight control boards (Pixhawk series [65]).
Likewise, determining software components in the attack-step
model entails manually examining the documentation and
source code of the most popular open-source RV software
(ArduPilot, PX4, and Paparazzi). We then extract only the
common hardware and software components from the flight
control boards and RV software packages.

To illustrate, Figure 3 shows a simplified attack-step
model to understand the propagation of acoustic noise
injection attacks. A series of sensor filters and sensor fusions
mitigate deviated sensor measurements (@-@), but they still
allow RV software to incorrectly estimate physical states
of RVs, e.g., roll, pitch, and yaw angles (®). Thus, RV
software targets incorrect physical states (@). In turn, the
RVs lose attitude control due to the incorrectly set throttles
of actuators (@).

We identify seven different types of components within
the attack-step model as prerequisites: RV types, sensor
configurations, RV control software, software versions, flight
modes, configuration parameters, and environmental condi-
tions.

We note that these prerequisites partially overlap due to
their hierarchical interdependence (e.g., RV control software
implies a possible set of software versions). Yet, we separate
prerequisites based on whether they can independently make
attacks succeed or fail. For instance, each RV control software
package configures hardware (e.g., sensors) in a peculiar way,
regardless of its software versions. In parallel, the software
version influences the attack success. Thus, RV control
software and its software version independently changes
the attack’s success.

@ RV Types. Attacks may require a specific RV type
for two main reasons. First, signals at a high frequency
(e.g., GPS L1 band is 1575.42 MHz) can only be effectively
propagated through a specific type of medium, like air. Yet,
such signals are unlikely to penetrate other types of mediums,
like water [84]. Thus, some attacks, such as injecting fake
GPS signals, cannot affect certain RV types (e.g., unmanned
underwater robots [16]). Second, each RV type leverages a
different coordinate system when the RV measures its attitude.
This difference makes attacks fail to cause negative impacts.
In particular, drones in the air and robots underwater measure
their attitudes in a 3-D coordinate system. On the contrary,
rovers on the ground are operated in a 2-D coordinate system,
i.e., they do not use roll and pitch angles. Thus, rovers heavily
depend on position sensors (e.g., GPS/GNSS receiver and
optical flow sensor) but do not mainly rely on IMUs. Such a
difference in the coordinate system makes the rover immune
to disturbances in the IMUs. Indeed, as shown in Figure 4a,
the drone crashes on the ground under an acoustic noise
injection attack (the purple dashed line in Figure 4a). Yet,
the rover does not face negative impacts (the cyan straight
line in Figure 4a) under the same attack.

@ Sensor Configurations. Attacks may require an RV
that is equipped with a target sensor but is not equipped
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with a secondary sensor. This is because the RV can still
correctly measure sensor values from the secondary sensor
under attack. Indeed, compromising one or two of the
three gyroscopes in an RV cannot cause significant physical
impacts (black and yellow straight lines in Figure 5a). The
RV shows 20 degrees of error at 18 seconds. Yet, the RV
immediately recovers the stable roll angles because the RV’s
EKF switching logic (as explained in Section 2) stops using

the compromised gyroscopes and starts using the intact one.

To cause significant impacts, attackers need to spoof the
primary and secondary sensors simultaneously. Yet, these
multiple attacks require the adversaries to address signal
interference issues [18], [87]. For instance, attackers may
need to inject acoustic signals at multiple frequencies because
() an RV is normally equipped with two/three different
types of IMUs [65], and (ii) each IMU sensor only can be
compromised at a unique frequency [85], [88], [89], [93]. Yet,
the acoustic signals at multiple frequencies can experience
phase shifts and inversion of the signal polarity [18], [87].

ArduPilot v.4.3.5, PX4 v.1.13.0, and Paparazzi v.6.2
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EKF
‘ Barometer H Range filter ‘—’

Multiwii v.2.4
Gyroscope
Magnetometer Low-pass filter Comp[e WEAIETY
filter
Barometer

Figure 6: Illustration of sensor filters in the most recent
versions of each RV control software.
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(a) Raw magnetometer values. (b) Roll estimated by an EKF.

Figure 7: Impacts of EMI on magnetometers in ArduPilot.

© RV Control Software. The effects of attacks completely
vary depending on the RV control software for two main
reasons. First, each RV software configures sensor parameters
differently (e.g., sensor filters). Thus, the sensor measure-
ments are also different, even under the same attack. PX4 [66]
disables low-pass filters inside IMUs (Listing | in Appendix).
On the contrary, ArduPilot and Paparazzi leverage low-pass
filters inside IMUs (Listing 2 and Listing 3 in Appendix).
Thus, as shown in Figure 4b, impacts of acoustic injection
attacks are different according to RV software, although
we conduct the same attack. Second, each RV software
implements its sensor filtering algorithms differently, as
shown in Figure 6. Thus, the impacts of attacks are also
different. Compared to the complementary filters in MultiWii
v.2.4 [58], EKFs show better filtering performance at high
levels of disturbance [27], [61]. Thus, MultiWii is more
vulnerable to attacks than others. Interestingly, ArduPilot,
PX4, and Paparazzi leverage the same types of filtering
algorithms (i.e., harmonic notch, low-pass, and range filters).
Yet, the developers of each RV software implement the
filtering algorithms differently.

For instance, dynamic harmonic notch filters [11], [76]
automatically determine the primary noise frequency and
adjust the notch’s center frequency to filter out the noise.
The harmonic notch filters in PX4 and Paparazzi can find
and attenuate the maximum nine peak frequencies [76]. On
the contrary, ArduPilot’s harmonic notch filters track and
attenuate the maximum 72 peak frequencies [11]. Thus,
ArduPilot more effectively filters out spoofed sensor values
compared to other RV control software. Indeed, as shown
in Figure 4d, PX4’s filters fail to filter out compromised
gyroscope values, although we compromise only one IMU.
Thus, the RV crashes on the ground at around 90 seconds
(green line in Figure 4d). On the contrary, ArduPilot’s filters
stably filter out compromised gyroscope values, although we
compromise all IMUs (green line in Figure 4c).



ArduPilot v.3.6.0
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Figure 8: Sensor filters in different versions of ArduPilot.

O Software Versions. The attacks require specific software
versions for two main reasons. First, RV developers have
improved sensor filters while updating software versions.
Second, they have implemented fail-safe logic [7], [62], [71]
in recent software versions.

As of this writing, the latest versions of RV control
software (e.g., ArduPilot v.4.3.5) are equipped with multiple
levels of sensor filtering and improved sensor fusion algo-
rithms, as shown in Figure 6. Such facts make it hard for
an RV to retain compromised sensor values. For instance,
attackers can inject electromagnetic fields to disturb an
RV’s magnetometers [82], as shown in Figure 7a. Yet,
ArduPilot’s range filter and EKFs filter out the spoofed
sensor values, and the attack causes only around two degrees
per second errors in roll angles (red line in Figure 7b). On the
contrary, as shown in Figure 8, old versions of RV software
(ArduPilot v.3.6.0 and v.3.2.1) leverage a single level of
sensor filtering or a less accurate sensor fusion algorithm
(e.g., direction cosine matrix). Such facts allow attackers
to easily spoof/jam sensors. Indeed, as shown in Figure 5b,
ArduPilot v.4.3.5 does not show any negative symptoms under
the attack [82]. On the contrary, ArduPilot v.3.6.0 incorrectly
decreases its altitude, although the RV must maintain the
current altitude. The RV, which uses ArduPilot v.3.2.1,
crashes on the ground due to its poor filtering algorithms [14]
(Figure 8).

Moreover, RV control software is equipped with fail-
safe logic [7], [62], [71] designed to recover RVs from
unexpected sensor disturbances. For instance, GPS glitch fail-
safe logic [34] in ArduPilot discontinues using the GNSS data
and switches to rely on positions predicted by IMUs when the
disparity between positions estimated by GNSS and IMUs
surpasses the threshold. Thus, the fail-safe logic can mitigate
attacks. Yet, old versions of RV software, unfortunately, do
not have such fail-safe logic (e.g., ArduPilot v.3.2.7). In
particular, the fail-safe logic can (i) stop using the primary
sensor and start using the secondary one or (ii) change the
RV’s flight mode into a manual mode, requiring the user to
manually operate the RV. Thus, the RV continues its mission
through the secondary sensor or the user’s manual inputs.

@ Flight Modes. Attacks require specific flight modes
because an RV leverages different sensors or even stops using
sensors according to its current flight mode. For instance, an
RV automatically operates during Loiter mode [50], which
uses all types of sensors attached to the RV. Conversely,
Acro mode [2] operates based on a user’s remote controller
inputs rather than sensor readings. Thus, as shown by the
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Figure 9: Impacts of EMI attack on SPI/I2C buses [42]
according to flight modes in ArduPilot v.4.3.5.
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blue lines in Figure 9, attacks (e.g., EMI injection to corrupt
all different types of sensor measurements [42]) are hard to
cause negative impacts when the RV is in Acro mode.

@ Configuration Parameters. The attacks require specific
configurations related to the sensor filtering and sensor fusion
parameters for two main reasons. First, the configuration
parameters determine the cutoff frequencies in the sensor
filters in Figure 6 and Figure 8. The spoofed sensor values
can be filtered out depending on the cutoff frequencies [11],
[76]. Second, the configuration parameters determine each
sensor’s weight for the sensor fusion algorithms (i.e., EKFs).
It is hard for an attack to cause negative impacts if attackers
spoof/jam a sensor that an RV uses with a low weight. For
example, as shown in Figure 7b, the injected electromagnetic
field [82] causes around two degrees per second errors in
roll angles (red line in Figure 7b). Yet, when we change
ArduPilot’s MAG_M_NSE configuration parameter [51] to make
the RV reduce the weight of magnetometers and increase
the weight of the gyroscopes, the attack fails to cause any
negative impact (green line in Figure 7b).

@ Environmental Conditions. Attacks need specific envi-
ronmental prerequisites. This is because each sensor requires
a unique environmental condition to correctly measure its
values; thus, the impacts of the attacks also change according
to the environment. For example, both optical flow sensors
and GNSS receivers are used to measure an RV’s current
position. Yet, optical flow sensors fail to calculate changes in
positions on floors without feature points (e.g., deserts) [22].
Similarly, GNSS receivers fail to calculate precise positions
in an urban canyon due to multipath issues [39].

Attackers can exploit such a fact to achieve their goals. To
illustrate, as demonstrated in Section 4, GPS spoofing fails to
deceive the GNSS receiver because the GNSS receiver uses
data from multiple satellite constellations. Yet, in specific
scenarios where a target RV is in proximity to man-made
structures, GPS spoofing can successfully achieve its attack
goals. This is because the RV’s GNSS receiver is hard-
pressed to receive data from benign satellites, but it receives
data from fake satellite signals created by the attackers.

6. Design Challenges

Our goal is to infer the prerequisites that make attacks
possible; however, this process raises three unique challenges.
C1: Simulating Attacks. The first challenge is simulating
attacks accurately. The simulators create sensor values with
the following steps: (1) randomly select a sensor value, (2)
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Figure 10: Overview of RVPROBER’s workflow.

add noises created by a standard normal distribution to the
sensor value, and (3) feed the sensor value into filters. RV
developers simulate sensor disturbances by adjusting the
noise levels in the second step. Yet, attacks in the real world
can have varying effects and may not follow a standard
normal distribution due to different hardware and attack
strategies used by attackers. To address this, RVPROBER first
takes, as input, sensor values compromised under the attack;
it then mutates the compromised sensor values based on four
attack parameters: intensity, duration, start time, and
attack algorithm.

C2: Natural Deviations. The second challenge concerns
how to distinguish attack failure and success from an RV’s
physical states (e.g., position errors). This task is challenging
because the RV’s operating conditions may naturally cause
negative effects regardless of the attacks. For instance, the
GNSS receiver may show more than 15 meters of position
errors without any attacks when there is a multipath issue [39]
in an urban canyon. Further, the RV can deviate from a
planned navigation path or even crash on the ground due
to naturally occurring sensor glitches and wind gusts. To
address this issue, RVPROBER first runs the same test case
with and without an attack. It then extracts the RV’s altered
physical states caused by the attacks.

C3: High-dimensional Search Spaces. Each prerequisite
creates an expansive search space. Thus, the last challenge
is the high-dimensional search spaces of seven prerequisites
and four attack parameters. In particular, the following three
prerequisites create high-dimensional search spaces: soft-
ware versions, configuration parameters, and environmental
conditions (e.g., ArduPilot has 15,840 software versions,
1,140 parameters, and 168 environmental conditions). The
combinations of these prerequisites are almost boundless.
Thus, a method is required to reduce the search space while
discovering the combinations of the prerequisites and attack
parameters that make the attack possible. To overcome this
challenge, RVPROBER leverages a binary search algorithm
to probe software versions. Additionally, RVPROBER ex-
tracts relevant configuration parameters and environmental
conditions through static and dynamic analysis; it then tests
only the extracted ones.

7. RVPROBER

We introduce RVPROBER, a framework for probing the
seven types of prerequisites required for attacks. Figure 10
shows the four main parts of RVPROBER. First, it takes, as
input, a type of attack, its corresponding goal, and sensor
values compromised by the attack. Second, it finds an
appropriate set of attack parameters to achieve the goal. Third,
it narrows down the search space by excluding particular
configuration parameters and environmental conditions (from
attack prerequisites) that are not relevant to the attack. Fourth,
it mutates seven different types of prerequisites to discover
the prerequisites required for conducting attacks successfully.

7.1. Inputs

RVPROBER takes, as input, a type of attack, its goal,
and the sensor values compromised by the attack (@ and
@ in Figure 10). The users can select one of the 12 attacks
in Table 3 and one of the three attack goals (mission failure,
unstable attitude/position, or physical crash) in Table 2.
Here, the users can optionally input a threshold for unstable
attitude/position. For example, {position, 10 meters} de-
notes that RVPROBER will consider more than 10 meters of
deviated positions as successful “unstable position” attacks.

We use the compromised sensor values as a guide to
find the sensor values required to achieve attack goals in
our setting. Users can obtain compromised sensor values
taken during an attack with two different methods. First, the
users can directly obtain compromised sensor values captured
during the attack if they have the hardware and software
required to conduct the attack. Second, they can obtain a
log file taken during the attack. Then, they upload the file
into log analysis software [8], [73] and obtain compromised
sensor values stored in the log file.

7.2. Attack Profiling

This step’s goal is twofold: (7) identifying physical states
(e.g., position) affected by the attack (selected in Section 7.1)
and (i7) determining the appropriate attack parameters nec-
essary to achieve the attack goal on simulators.
Monitoring Physical States. The 12 attacks aim to cause
physical crashes, instability, and mission failure. Thus, to



identify the physical states affected by the attack, we need
to monitor an RV’s position, attitude, and status. To do
so, RVPROBER parses status messages sent by an RV
to a ground control station (GCS). From the status mes-
sages, it monitors six physical states, including latitude,
longitude, altitude, roll, pitch, and yaw, as well as
three warning messages, namely “triggering fail-safe logic”,
“crashing on the ground”, and “disarming motors”.

Attack Parameters. RVPROBER requires attack parameters
before probing the prerequisites. The reason is that the
given compromised sensor values may not be sufficient to
achieve the attack’s goal. For example, filtering algorithms
in an RV’s software may filter most of the compromised
sensor values, resulting in no noticeable impact on the RV’s
physical behavior. Unfortunately, the research literature [22],
[42], [43], [82], [83] does not mention any specific attack
parameters to achieve the attack’s goals. To address this
issue, RVPROBER automatically finds the attack parameters.

The attack parameters include (1) intensity of the spoofed
sensor values, e.g., how much positioning error a GPS
spoofing attack can cause; (2) attack duration, e.g., how
long the attack disturbs a GPS receiver; (3) attack start time,
e.g., at which flight stage is the RV under the GPS attack;
and (4) attack algorithms, e.g., suddenly changing GPS lock
or gradually overtaking GPS lock [60].

We note that RVPROBER identifies the required attack
parameters from the software version mentioned in the
research literature. In the absence of such software version
information, RVPROBER determines the attack parameters
from the latest RV control software version.

Determining Attack Success Thresholds. We need to deter-
mine how to establish attack success conditions for assessing
whether an attack achieves its goal. This is because users
might not input the specific thresholds in the previous step
(Section 7.1), and RVPROBER requires reasonable thresholds
to evaluate attacks. We can easily detect mission failures and
physical crashes on simulators. Yet, unfortunately, none of
the research literature mentions exact attitude/position errors
as their attack goals. To address this issue, we obtain such
thresholds (e.g., 5 meters of position error [12]) from test
cases created by RV control software developers.

Detailed Steps in Attack Profile. RVPROBER performs the
following steps: (1) it runs a default mission’ created by
ArduPilot developers [10], (2) it injects the compromised sen-
sor values into the RV’s sensor(s), (3) it mutates four different
attack parameters if the injected attack fails to achieve the
attack’s goal (@ in Figure 10), and (4) RVPROBER stores
the RV’s changed physical states and attack parameters if

the injected attack achieves the goal (@ in Figure 10).

Mutating Attack Parameters. To discover appropriate
attack parameters, RVPROBER randomly selects one of
them. Then, it (i) switches the brute-force attack to a
hill climbing algorithm [53], [60], [96] (@ in Figure 11
and purple lines in Figure 12c), (ii) multiplies an initial
intensity by a factor of two, injecting more severe sensor

3. Other RV software packages can also execute this mission if they
follow the MAVLink protocol [54].

-BF: Brute-force
-HC: Hill climbing
-I: Initial value

s: Attack success f
f: Attack fail @ @
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Figure 11: Mutation strategies for attack parameters.
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Figure 12: Mutating attack parameters. X-axis and Y-axis
denote time (seconds) and degrees per second measured in
a gyroscope sensor, respectively. The red line in Figure 12a
represents sensor values under an acoustic noise injection
attack in the real world.

disturbances (@ in Figure 11 and blue lines in Figure 12a),
(iif) multiplies an initial duration by a factor of two,
injecting the compromised sensor values multiple times (@
in Figure 11 and cyan lines in Figure 12b), or (iv) divides
start time by a factor of two, injecting the compromised
sensor values at an earlier time (€ in Figure 11).

7.3. Reducing the Search Space of Prerequisites

This step (@ in Figure 10) reduces the high-dimensional
search spaces of configuration parameters and environmental
conditions as attack prerequisites (C3 in Section 6). We
obtain an RV’s physical states that are affected by the attack
in the previous step (Section 7.2). Here, we map the identified
physical states to particular configuration parameters and
environmental conditions. To do so, we adapt PGFuzz’s
input profiling engine [45] that allows RVPROBER to map
the configuration parameters and environmental conditions to
the physical states through static and dynamic analysis. Yet,
unlike PGFuzz, RVPROBER probes the configuration parame-
ters only related to sensor filters, EKF sensor fusions, and fail-
safe logic rather than probing the entire set of configuration
parameters. This is because other configuration parameters
directly alter hardware configurations, thus disrupting an
RV’s operation even without any attack, or do not directly
change the impacts of the attack.

7.4. Probing Engine

We note that RVPROBER’s probing engine aims to
achieve soundness rather than completeness from the dy-
namic analysis. The soundness denotes that: (a) when
RVPROBER identifies prerequisites that enable an attack in a
simulated environment, those prerequisites are also required
for conducting the attack successfully in the real world; and
(b) when RVPROBER identifies prerequisites that disable an



Algorithm 1 RVPROBER’s probing engine for configuration
parameters and environmental conditions.

Input: A time limit T, a simulator SIM, RV’s physical states Phyget,
configuration parameters and environmental conditions related to the attack
searchgpace, attack parameters Attackparam

Output: Mutated configuration parameters and environmental conditions
Is making the attack successful, Ir making the attack fail

1: function RVPROBER(Attackparan, T)

> Main

2: I <~ RANDOM(searchgpace) > Get randomly selected inputs

3: while time < T do

4: SIM.g o> ¢ SIM.initialize() > Initialize simulators

5: State, < SIMj.execute(I, Attackess) © Collect RV’s state
error

6: State, < SIMj.execute(I, Attacko,) © Collect RV’s state
error

7 Result <~ ORACLE(State, —Statey) > Check attack
success

8: if Result = success then

9: Is < IUI > Store the input making the attack successful

10: else

11: If + I:UI > Store the input making the attack fail

12: end if

13: I < MUTATE(searchgspace, Statey, I) > Mutate the input

14: end while

15: return I, I¢

16: end function

17: function MUTATE(searchgpace, Statey, I) > Pick another input

18: if ORACLE(Statey,) = success then > Input is self-sabotaging

19: searchgpace ¢ searchgpace —I > Exclude self-sabotaging
input

20: end if

21: I+ RANDOM(searchgpace) > Pick another input

22: return I

23: end function

attack in a simulated environment, those prerequisites also
make the attack fail in the real world.

Differential Testing. This step extracts the attack’s impacts
under different prerequisites (@) in Figure 10). To achieve
this, RVPROBER conducts the same attack on two different
simulators, one with the attack and another one without it (C2
in Section 6). The reason is that the prerequisites (e.g., wind
speed) can also naturally disturb the RV’s physical states,
causing similar symptoms to those of successful attacks.
RVPROBER monitors the RV’s physical states for a user-
defined period. It then extracts the differences in the physical
states between the two simulation results.

Evaluating Attack Impacts. This step decides whether
the attack achieves its goal or not (@) in Figure 10).
RVPROBER leverages thresholds given by users if provided.
Otherwise, RVPROBER employs the thresholds established
by RV control software developers in their test cases [12].

Mutating Prerequisites. RVPROBER leverages three strate-
gies to test the seven types of prerequisites. First, RVPROBER
tests all possible combinations of RV types, sensor con-
figurations, RV control software, and flight modes (@
in Figure 10). Second, RVPROBER uses a binary search to
discover from which software version the attack is possible.
Third, RVPROBER mutates configuration parameters and
environmental factors using Algorithm 1.

The algorithm repeatedly conducts the following. (1)
It takes, as input, the attack parameters discovered in (2]
in Figure 10 (Line 1). (2) It randomly selects an input from

searchgp,c. identified in © in Figure 10, and assigns a
random value to the selected input (Line 2). Here, the random
value for the input is still within the valid range defined by RV
software developers. We note that RVPROBER tests a single
input at a time, e.g., changing wind speed. (3) It conducts
differential testing to verify the attack’s success is due to
the injected sensor readings (Lines 5 and 6). (4) It checks
whether the executed input still makes the attack successful
(Line 7). Here, we consider the attack successful only if the
simulation with the attack achieves the attack’s goal (Line
6), but another simulation without the attack fails to achieve
the goal (Line 5). (5) It selects another input if RVPROBER
detects a successful attack (Lines 8 and 21), i.e., the attack is
independent of the tested input (configuration parameter or
environmental condition). (6) In the event that the assigned
value of the input leads the simulation, without the attack,
to achieve the attack’s goal (Lines 18 and 19). It means that
the input-value pair is self-sabotaging, resulting in attack
symptoms. (e.g., turning off sensors). Thus, the algorithm,
during its random selection of a value in step (2), excludes
such self-sabotaging pairs. RVPROBER terminates when the
testing time exceeds a user-defined time limit 7.

8. Implementation

Attack Implementation. We performed all the demonstrated
attacks presented in Table 3 in a real-world setting to obtain
the compromised sensor values, with the exception of “EMI
injection on SPI/I2C” attacks [42]. This is because we do not
have the EMI generation hardware used in [42]. Instead, we
first manually analyzed the maximum sensor reading errors
from the demo video available in [42]. We then injected an
equivalent level of sensor noises into SPI/I2C. We detail the
experimental equipment we used in Table 5 in Appendix B.
To simulate the attacks in a software-in-the-loop (SITL)
simulator, we (i) added scheduling jitters in SITL, and (if)
injected sensor values compromised by the attack in the
real world. The motivation for adding scheduling jitters is
that Jeong et al. [43] show such scheduling jitters contribute
to the attack’s negative impacts. Yet, SITL simulators on
x86 machines do not have such scheduling jitters due to
x86 machines’ fast processing times compared to microcon-
trollers. The scheduling jitters were set at a standard deviation
of approximately 103 us based on the experimental results
presented in [43].
Profile & Probing Engine. We added 246 lines of code
(LoC) into PGFuzz’s profiling engine [45] to extract configu-
ration parameters related to sensor filters, EKF sensor fusions,
and fail-safe logic. We wrote 2,695 LoC using Pymavlink
v2.4.16 [80] that enables RVPROBER to communicate with
simulated RVs via MAVLink protocol [54]. ArduPilot and
PX4 implement MAVLink protocol differently. Thus, we
additionally modified 284 LoC for PX4’s attack profile and
probing engine. We used Gazebo v.11.12.0 [32] to simulate
RVs. We tested released software versions in ArduPilot and
PX4 rather than testing every minor software update. We used
Gazebo plugins [33] to simulate GNSS multipath regarding
GNSS spoofing and jamming. Further, we adopted the list
of environmental conditions specified in PatchVerif [46].



TABLE 4: Summary of required prerequisites to achieve, as the attack’s goal, “Physical crash” in ArduPilot and how many

real-world RV configurations satisfy the required prerequisites.

Attack prerequisites that make the attack successful / all prerequisites related to the attack How many RV conﬁ gurations
satisfy prerequisites?
(1) Type of RV® (Cz? Senspr (C3) Soflware (Ii?)lfl}:(g);l:);lgs: (Cs) Configuration| (Cg) Envirgnmental Ci-C, Ci-Ce
configuration version parameter condition
M: Manual
GNSS spoofing (d)P D, R 1/6 v.3.2.0 - v.3.5.0 A 6/9 Downtown 5.94% 0%
GNSS spoofing (w) D, R 2/6 v.3.2.0 - v4.3.5 A 6/9 Downtown/rural [90.09% 58.41%
GNSS jamming (d) D, R 2/6 v.3.2.0 - v.3.5.0 A 6/9 Downtown/rural |90.09% 0%
GNSS jamming (w) D, R 2/6 v.3.2.0 - v.3.5.0 A 6/9 Downtown/rural (90.09% 0%
Acoustic noise (d) D, S 1/3 v.3.2.0 - v.3.3.2 A 3/9 N/A 18.81% 0%
Acoustic noise (w) D, S 3/3 v.3.2.0 - v4.3.5 A 3/9 N/A 94.05% 64.35%
EMI Injection on mag (d) N/A N/A N/A N/A N/A N/A 0% 0%
EMI Injection on mag (w) D 2/2 v.3.2.0 - v.3.4.0 A 2/3 N/A 94.05% 0%
EMI Injection on SPI (w) D,R, S 172 v.3.2.0 - v4.3.5 A 3/3 N/A 100% 64.35%
EMI Injection on SPI (w) D, R, S 12 v.3.2.0 - v.4.3.5 A 3/3 N/A 100% 64.35%
Optical flow spoofing (d) D 172 v.3.2.0 - v4.3.5 A 3/12 N/A 0.99% 0%
Optical flow spoofing (w) D 172 v.3.2.0 - v4.3.5 A 3/12 N/A 0.99% 0%
% D: Drone, R: Rover, S: Submarine B~ d: Demonstrated attack, w: Worst-case attack
B Physical crash O Unstable attitude/position O Mission failure
100% 58.41% 56.43% 56.43% 64.35% 64.35% 64.35%
vl N 1o a N w1 il
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Figure 13: The quantified real-world hardness in ArduPilot (upper) and PX4 (lower). Percentages represent how many
real-world RV configurations satisfy the required attack prerequisites. d and w on the x-axis denote demonstrated attacks and

worst-case attacks, respectively.

Collecting RV Logs. PX4 users upload their RV logs into
PX4’s publicly accessible log database [77] for the purpose of
log analysis. We collected 29,958 logs from the log database
using a script provided by developers. We then wrote 554
LoC using the PX4ULog Python library to parse the logs. We
manually collected 101 ArduPilot logs from its community
website [6] because ArduPilot does not have any public log
databases. The collected logs from PX4 and ArduPilot were
created from December 2016 to February 2023.

9. Evaluation

We evaluated RVPROBER on 12 well-known attacks
(in Table 3) with ArduPilot [4] and PX4 [66]. We excluded
Paparazzi from our evaluations because its control algorithm
is ported from PX4’s control algorithm [70]; thus, the
majority of its control algorithms overlaps with PX4’s
ones. Nevertheless, we acknowledge that Paparazzi’s code
differences could potentially change its behavior when some
of the considered attacks are performed. We leave conducting
a full evaluation of Paparazzi as future work.

9.1. Prerequisites Required to Conduct Attacks

The required prerequisites vary according to each attack,
adversary capability, and the attack’s goal. Table 4 shows
(i) the discovered prerequisites to achieve, as the attack’s
goal, “physical crash” in ArduPilot, and (i) how many
real-world RV configurations (log files) are vulnerable to
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50%
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Physical  Instability ~ Mission Physical Instability =~ Mission
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(a) ArduPilot. (b) PX4.

Figure 14: Comparison of black-box and white-box attack
models in terms of quantified real-world attack hardness.

attacks (details of PX4’s ones in Appendix C). The 12
attacks require, on average, 4.2 different types of pre-
requisites. GNSS spoofing (d) requires the most prereq-
uisites, while EMI injection on SPI requires the fewest.
EMI injection on mag (d) cannot achieve the attack goals
because RV software assigns small weights to magnetometers
in the sensor fusion algorithms (EKFs); thus, spoofing one of
the magnetometers cannot cause noticeable negative impacts.

9.2. Analysis of Quantified Attack Hardness

We analyze how many real-world RV configurations
among 30,059 RV logs are vulnerable to each attack in terms
of the attack’s goals and adversary capabilities, as shown
in Figure 13. Only “GNSS spoofing”, “acoustic noise”, and
“EMI on SPI” attacks can make RV physically crash. Optical
flow spoofing attacks do not require many prerequisites, but
a few real-world RV configurations leverage the optical
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Figure 15: Impacts of injected acoustic noises on ArduPilot.
The yellow area on the figure denotes the activated vibration
fail-safe. The RV crashes on the ground at around 90 seconds.

flow (10.08%). Thus, only 0.64% of the actual users are
vulnerable to the optical flow spoofing attacks.

PX4 control software requires fewer prerequisites in
comparison to ArduPilot, with an average of 2.8 prerequisites
versus 4.2 for ArduPilot. Thus, PX4 is more susceptible to
the attacks than ArduPilot. Notably, when the real-world RV
configurations satisfy the “type of RVs” and “flight mode”
prerequisites, a majority of the attacks can successfully
achieve their goals. Such a fact results in the quantified
hardness of the attacks being consistent at around 61%.

White-box Attack Model. Figure 13 assumes a black-box
attack model, wherein attackers lack knowledge about an
RV’s software, hardware, and environmental configurations.
This attack model accounts for scenarios in which a user
changes an RV’s configurations, leading attackers to blindly
carry out their attacks. On the contrary, the white-box attack
model considers scenarios in which the user does not alter
the RV’s configurations, and the attackers possess knowledge
about the RV’s configurations. The white-box attack model
achieves an average 2.9-fold increase in attaining attack goals
compared to the black-box model when the attackers conduct
attacks against all RVs, as shown in Figure 14. 24.7% of
ArduPilot users are still not vulnerable to white-box attacks
because they leverage manually-controlled flight modes. On
the contrary, none of PX4 users are immune to white-box
attacks due to design flaws (Detailed in Section 9.3.1).

9.3. Case Studies

We explain required prerequisites and root cause analysis
pertaining to acoustic noise [43], [85], [88], [89], [93] and
electromagnetic interference (EMI) injection [42] attacks.
We detail the experimental setups for these two attacks in
Appendix E and Appendix F. During the root cause analysis,
we reported the identified design flaws of the RV software
to the developers and are awaiting their responses.

9.3.1. Case Study 1 - Acoustic Noise Injection Attacks. We
successfully replicate the attacks based on the prerequisites
identified by RVPROBER.

Attack Prerequisites (Demonstrated Attack). RVPROBER
discovers that this attack requires five different types of
prerequisites. First, the types of RVs must be drones or
submarines because rovers on the ground are not vulnerable
to this attack (as shown in Figure 4a). Second, an RV must be

equipped with only one IMU (gyroscope and accelerometer).
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(a) Gyroscope measurements. (b) Roll angle and altitude.

Figure 16: After turning off the vibration fail-safe. The purple
area on the figure denotes the activated GPS glitch fail-safe
logic. The RV crashes on the ground at around 140 seconds.
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Figure 17: Turning off vibration and GPS glitch fail-safe.
The RV crashes on the ground at around 150 secs.
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Figure 18: Turning off (i) the vibration fail-safe, (i) GPS
glitch fail-safe, and (iif) “yaw reset”. The green area on the
figure represents turned on EKF fail-safe.

This attack fails to achieve its goal against an RV that has
two or three IMUs (the sensor configuration column) due
to the EKF switching, as shown in Figure 5a. Third, this
attack succeeds in achieving the attack goal when ArduPilot
software versions are from v.3.2.0 to v.3.3.2. Other software
versions (v.3.3.3 to v.4.3.5) show unstable attitude/position
control and mission failure rather than physically crashing
on the ground due to the improved sensor filter and sensor
fusion algorithms (Figure 6 and Figure 8). Fourth, only
autonomous flight modes leverage the IMU sensors. Thus,
manually-controlled flight modes are not vulnerable to the
attack. Fifth, RVPROBER discovers that configuration param-
eters (e.g., EK3_GYRO_P_NSE and EK3_ACC_P_NSE) directly
determine the attack’s success regardless of the attacker’s
capabilities (in Table 3) and attack parameters (in Figure 12).
The reason is that these two parameters set how much to
weigh IMU readings in the sensor fusion step.

Attack Prerequisites (Worst-case Attack). This attack does
not require, as prerequisites, particular sensor configurations
and software versions compared to acoustic noise (d)
because acoustic noise (w) disturbs an RV’s all IMUs.



Root Cause Analysis (ArduPilot). RV software is designed
to detect sensor disturbances and then activate EKF fail-safe
logic [24] to react to the disturbances, e.g., changing the
RV’s current flight mode to a manually-controlled mode.
Yet, ArduPilot fails to trigger the EKF fail-safe logic while
testing the attacks, as shown in Figure 15.

We discover previously-unknown root causes of the
successful attacks by manually analyzing multiple software
versions. This is because we notice that each software
version uses slightly varied fail-safe logic, leading to entirely
distinct symptoms under the attacks. Interestingly, the fail-
safe algorithms of RV control software, intended to address
sensor disturbances, are the primary cause of the physical
crashes due to three design flaws.

First, ArduPilot incorrectly assumes the IMUs spoofed by
the attacks as a high level of physical vibrations on its body
frame. This wrong assumption leads to a physical crash as
follows: (1) ArduPilot triggers vibration fail-safe logic [92]
(yellow area on Figure 15a). It switches from EKF sensor
fusion to a complementary filter which is tuned to be more
resistant to vibration (but less accurate) than the EKF. Indeed,
the complementary filter aggressively removes gyroscope dis-
turbances compared to the EKF (See Figure 15a, Figure 16a,
and Figure 18a). (2) The RV starts to lose attitude and
position control due to the less accurate complementary filter
(around 90 seconds in Figure 15a) and eventually crashes on
the ground. In fact, the RV maintains a stable attitude and
position for 50 seconds longer than before when we turn off
the vibration fail-safe logic, as shown in Figure 16.

Second, the RV still crashes on the ground despite turning
off the vibration fail-safe logic. Another design flaw is that
ArduPilot incorrectly assumes compromised IMUs as GNSS
signal disturbances. This design flaw leads to a physical
crash as follows: (1) ArduPilot triggers GPS glitch fail-safe
logic [34] due to large deviations between IMU and GNSS
readings. ArduPilot trusts more IMUs than GNSS because
GNSS signals are prone to being disturbed by multipath
issues [39]. On the contrary, IMUs do not frequently suffer
from natural disturbances. (2) ArduPilot stops using GNSS
data during the GPS glitch fail-safe mode. (3) The RV loses
attitude and position control as the sensor fusion algorithm
eliminates the GNSS readings and eventually crashes on the
ground (140 seconds in Figure 16b).

Third, the RV still physically crashes on the ground
despite turning off both vibration and GPS glitch fail-safe
logic. Another design flaw is “yaw reset” [26]. ArduPilot
causes a physical crash as follows: (1) It detects large
deviations between IMU and magnetometer readings. (2) It
incorrectly assumes that magnetometers suffer from natural
disturbances. This wrong assumption stems from the RV
control software’s design to place greater trust in IMUs
than in magnetometers. (3) It stops using the magnetometers
and leverages IMUs and GNSS to estimate the RV’s yaw
angle (EKF-Gaussian Sum Filter [9], [75]). (4) Unfortunately,
the acoustic noises compromise the IMUs. Thus, the newly
calculated target yaw angle is totally different from previous
ones (at 53 seconds in Figure 17a). (5) The RV aggressively
changes its yaw angle to reach the new target yaw angle.
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(a) Compromising an IMU.

Figure 19: After modifying PX4’s fail-safe logic. The red
and green areas on the figure represent injected acoustic
noises and turned on modified EKF fail-safe, respectively.
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Figure 20: EMI attacks succeed or fail according to the
fail-safe logic in ArduPilot. The green area on the figure
represents the turned-on EKF fail-safe. The purple, yellow,
red, and gray areas denote “yaw reset”’, EKF switching, GPS
glitch fail-safe, and vibration fail-safe, respectively.

Yet, such acrobatic movements make the RV lose its position
control (at 53 seconds in Figure 17b) and eventually crash
on the ground (at 150 seconds in Figure 17b).

We modify ArduPilot’s fail-safe logic to trigger the EKF
fail-safe. In this case, ArduPilot maintains a quite stable
attitude and position under the attack, as shown in Figure 18.
Root Cause Analysis (PX4). PX4 is susceptible to both
demonstrated and worst-case acoustic noise injection attacks
due to three primary reasons. First, as explained in Section 5,
PX4 always disables low-pass filters inside IMUs. The
turned-off low-pass filters make PX4’s harmonic notch filters
less effective than ArduPilot’s ones, as shown in Figure 4c
and Figure 4d. Second, PX4 leverages too high thresholds
(e.g., EKF2_SEL_IMU_ANG) to trigger fail-safe logic (Detailed
in Appendix D). Thus, it fails to promptly respond to the
attacks. Indeed, PX4 triggers EKF switching after the RV
crashes on the ground at around 90 seconds in Figure 4d (See
details of the RV log [74]). Third, PX4’s fail-safe logic sends
a warning message to users rather than actively addressing
the failure on sensors. Thus, the RV still crashes on the
ground even if PX4 triggers the fail-safe. We modify PX4’s
fail-safe logic to trigger a manually-controlled flight mode
(e.g., Altitude [3]). In this case, the RV maintains a stable
attitude and position under the attacks, as shown in Figure 19.

9.3.2. Case Study 2 - Electromagnetic interference (EMI)
on SPI/I2C buses. We succeed in replicating the attacks
based on the prerequisite identified by RVPROBER. RVs
physically crash on the ground regardless of the adversary’s
capabilities, as shown in Figure 20a.

Attack Prerequisites (Demonstrated & Worst-case At-



tacks). RVPROBER discovers that these attacks require two
different types of prerequisites. First, these attacks require,
as prerequisites, particular sensor configurations. This is
because an automatic parachute ejection prevents an RV
from physically crashing on the ground [17]. ArduPilot
detects free fall in the air and automatically releases a
parachute [5]. Yet, due to its design flaw, PX4’s automatic
parachute ejection [78] cannot prevent crashing on the ground.
We will detail the design flaw in the root cause analysis.
Second, manually-controlled flight modes stop using data
on compromised SPI/I2C buses; thus, these attacks fail to
achieve its goals, as shown in Figure 9.

Root Cause Analysis (ArduPilot). The root cause of the
successful attacks lies in the flawed assumptions underlying
ArduPilot’s fail-safe logic [7], which assumes the availability
of at least one type of sensor that provides accurate readings.
Yet, this assumption fails during the attacks since the attacks
corrupt data on all sensor types connected via SPI/I2C buses.

EKF fail-safe logic [24] can address the attack by
changing the RV’s flight mode to a manual flight mode
(e.g., Acro [2]). Yet, ArduPilot activates a series of fail-safe
logic except for EKF fail-safe (Figure 20a). Thus, it wastes
around one minute to trigger the inappropriate fail-safe logic,
and it eventually crashes on the ground at around 110 seconds
in Figure 20a. In fact, the RV maintains a stable attitude and
altitude under attacks after modifying ArduPilot to turn off
all fail-safe logic except for EKF fail-safe (Figure 20b).

Root Cause Analysis (PX4). PX4 detects disturbances on
sensors and triggers “Attitude fail-safe” logic [67] under the
attack. Yet, two underlying reasons make the RV crash on
the ground. First, the fail-safe is triggered when the RV’s
roll is deviated by more than 60 degrees (See Figure 23
in Appendix D). Yet, it is too late to recover the RV’s lost
attitude. Second, the triggered fail-safe logic (i) simply sends
a warning message to a ground control station (GCS), or (ii)
deploys a parachute if the RV has one. Yet, the deployed
parachute cannot even make the RV safely land on the ground.
This is because the parachute is deployed at a time when
the RV’s attitude is already highly unstable.

10. Limitations and Discussion

Interdependency between Prerequisites. We do not system-
atically consider interdependencies between configuration
parameters and environmental conditions. Thus, RVPROBER
may incorrectly judge an attack’s negative symptoms. For
example, an attack succeeds in disturbing an RV’s mission,
but the RV does not crash on the ground. In this case,
RVPROBER concludes that the attack fails to achieve “phys-
ical crash” as its goal. Yet, a physical crash could still
occur as a result of various combinations of configuration
parameters and environmental conditions, such as strong wind
gusts, faulty user configurations, and improperly calibrated
IMU sensors [1], [21]. Inferring such interdependencies
is challenging due to the high-dimensional input spaces,
including human factors. We leave this topic for future work.

Modeling Attacks. We simulate the attacks by mutating
the four attack parameters based on compromised sensor

readings in the real world (Figure 12). Yet, one may believe
that we can generate the attacks by modeling the mechanical
and electrical characteristics of sensors. Yet, it is challenging
because materials, sensor aging, and imperfections of the
sensors during manufacturing processes change the physical
phenomena inside the sensors under attack. We also leave
this topic for future work.

Limited Capability of Attackers. We use non-powerful hard-
ware resources in our real-world experiments (Appendix B
and Figure 21). Yet, the experiments are still reasonable
for two main reasons. First, the security community cannot
anticipate that RV developers can easily access or purchase
powerful hardware (e.g., military-grade) to conduct the
attacks. Second, we reveal that each attack requires prereq-
uisites regardless of the attackers’ capabilities (demonstrated
attacks vs. worst-case attacks in Table 4).

Simulation-to-reality Gap. To validate the identified prereq-
uisites, we conduct real-world attacks using random-sampled
sets of identified prerequisites. In particular, we perform a
total of 33 real-world attacks: 11 GPS spoofing attacks, 10
acoustic noise injections, 10 EMI injections on magnetome-
ters, and 2 optical flow spoofing attacks. Due to our hardware
limitations, we exclude GNSS jamming and EMI injection on
SPI attacks from the real-world experiments. We confirm that
the real-world results are consistent with the simulated results,
validating RVPROBER’s soundness. Yet, we acknowledge the
potential for discrepancies between simulated and real-world
results due to the lack of completeness in RVPROBER’s
probing engine.

Required Manual Effort. Manual effort was required to
construct attack-step models, identify the seven types of
prerequisites, and analyze the root causes of sensor attacks.
We believe that such a manual workload is not a significant
burden for knowledgeable developers. We note that these
manual steps are a one-time effort; thus, users do not need
to redo these manual steps. To use RVPROBER, the only
manual task is to prepare the inputs (Section 7.1). The other
components of RVPROBER are automated.

Attack Hardness-Based on Constraints of Attacks. Our
quantified attack hardness does not consider all the real-world
constraints of attacks (e.g., due to the different availability
and cost of the specific hardware components required to
perform a specific attack). This choice was motivated by the
fact that real-world constraints can vary and change over
time. Instead, we represent hardness based on the number
of real-world RV configurations (sampled from flight logs)
that satisfy the required prerequisites. This is because the
historical flight logs can estimate how frequently a specific
attack is currently feasible/infeasible in the real world.
New Attack Types and Patterns. To allow users to test new
attack types and patterns, RVPROBER provides users with the
capability to simulate attacks on vision sensors (e.g., LIDAR
and 3D depth camera). RVPROBER also provides an option
to simulate sensor attacks without needing compromised
sensor values in the real world. This is achieved by allowing
users to inject a configurable level of sensor noise.

Reachability Analysis for RVs against Attacks. We may



leverage the attack-step model and the identified prerequisites
to conduct a reachability analysis [20], [47] for RVs against
attacks. Indeed, we can investigate how successful and
unsuccessful attacks cause a victim RV to transition between
unsafe and safe states. For instance, rovers on the ground
leverage a 2-D coordinate system and do not use roll and
pitch angles measured by IMUs. Such a fact prevents attacks
targeting IMUs from reaching unsafe states (i.e., making the
RV software set incorrect throttle values for the actuators),
as depicted by the purple dashed line in Figure 4a. On the
contrary, drones in the air use a 3-D coordinate system
and heavily depend on IMUs. This dependency makes the
attacks on IMUs reach unsafe states, as illustrated by the
cyan straight line in Figure 4a.

11. Related Work

Hardness Study. Yan et al. [94] quantify the risk of sensor
hardware designs against attacks. Yet, their quantified risk
focuses on sensor hardware designs (i.e., no consideration
of the entire RV hardware and software components). Nassi
et al. [59] classify the hardness of sensor attacks into three
levels (high, medium, and low) through the complexity of
attacks. Yet, the classification criteria are abstract, impeding
the accurate quantification of attack hardness, e.g., if an
attack requires environmental conditions to be successful,
then they categorize the complexity of the attack as high. On
the contrary, we discover previously-unknown prerequisites
and show how many actual users are vulnerable to attacks.
Modeling Attacks. SensorFuzz [95] models sensor values
compromised by attacks as sine waves. Then, to simulate
attacks, SensorFuzz mutates the sine waves by changing
the amplitude, frequency, and phase. Yet, this sensor model
does not consider mechanical and electrical characteristics
of sensors (Section 10). Instead, we mutate compromised
sensor values based on sensor measurements under the
attack because the compromised sensor values reflect the
mechanical and electrical characteristics of sensors.

Destructive Attacks. Martin et al. [52] inject a shock
wave in close proximity to an RV. In turn, the shock wave
causes deformation in the RV’s propellers, leading to an
inappropriate thrust and lift, ultimately resulting in crashing
on the ground. Yet, in this paper, we focus on evaluating
the hardness of sensor spoofing and jamming, rather than
delving into physical deformation attacks.

12. Conclusions

Our paper reveals that performing successful physical
sensor attacks requires satisfying specific prerequisites and
attack parameters. To automatically find these required pre-
requisites and attack parameters, we introduce RVPROBER.
RVPROBER discovers that (i) 12 well-known sensor attacks
require, on average, 4.4 different types of prerequisites; and
(if) on average, 57.08% of actual users are vulnerable to the
12 attacks. By satisfying the prerequisites, we increase the
number of successful attacks from 6 to 11. We also discover
that 4 out of the 12 attacks are possible due to previously-
unknown design flaws in the RV control software’s fail-safe
algorithms.
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enum GYRO_CONFIG_BIT : uint8_t {

DT,P

// Disable DLPF

FCHOICE_B_8KHZ_BYPASS_DLPF = Bitl | Bit0};
enum ACCEL_CONFIG2_BIT : uint8_t {

// Disable DLPF

ACCEL_FCHOICE_B = Bit3};

Listing 1: PX4 disables digital low-pass filters (DLPF)
inside ICM-20689 IMU sensor [79]. (See details in the
datasheet [40])
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Appendix A.
RV Software’s Sensor Parameter Settings

Each RV control software differently configures param-
eters inside IMUs (gyroscopes and accelerometers), which
affects attacks’ success or failure. In particular, PX4 disables
digital low-pass filters (DLPF) if a sensor provides “turning
on/off” options. Otherwise, PX4 leverages the highest level
of cutoff frequency for DLPF to invalidate the functionality
of DLPF [72] (Lines 3 and 6 in Listing 1). On the contrary,
ArduPilot and Paparazzi turn on DLPF inside IMUs, as
shown in Listing 2 and Listing 3.

W =

S

// Turn on DLPF
config |= BITS_DLPF_CFG_188HZ;
_register_write (MPUREG_CONFIG, config, true);

Listing 2: ArduPilot leverages digital low-pass filters (DLPF)
inside ICM-20689 IMU sensor [13]. (See details in the
datasheet [40])

ine IMU_MPU_LOWPASS_FILTER MPU60X0_DLPF_42HZ

// Turn on DLPF
imu_mpu_spi.mpu.config.dlpf_cfg = IMU_MPU_LOWPASS_FILTER;

Listing 3: Paparazzi leverages digital low-pass filters (DLPF)
inside MPU-6000 IMU sensor [63]. (See details in the
datasheet [57])

Appendix B.
Experiment Method and Equipment

Figure 21 and Table 5 shows details of experiment

methods and equipment in this paper.
GNSS Spoofing. We generate fake GPS signals through (i)
GPS-SDR-SIM [36], an open-sourced GPS signal generation
software, and (i) a HackRF One software-defined radio
(SDR) platform [37] to transmit the generated fake GPS
signals into the target RVs. We select, as a target RV, Pixhawk
4 mini microcontroller equipped with two IMUs, u-blox M8EN
GNSS receiver, and PX4 flight control software (v.1.13.0). We
do not modify any code lines and configuration parameters
of the PX4 software. To make an optimal environment from
the attacker’s perspective, we make the distance between
the GNSS receiver and GPS spoofer less than one meter.
Further, we do not move physical positions of the target RV
and GPS spoofer while conducting experiments.

We choose a rural area to verify the feasibility of the
GPS spoofing attacks because such an open space is normal
flight environments for drones in the air. The rural area is
an optimal location for the GNSS receiver because there are
no multipath issues in the environment [39].

Acoustic Noise Injection. The distance between the speaker
and Pixhawk boards are around 15 cm. Further, we make
the Pixhawk boards’ IMUs directly face the acoustic noises
(i.e., we remove the Pixhawk boards’ shielding), as shown
in Figure 21-(b).

EMI Injection on Magnetometers. We place the electro-
magnetic generator on top of Pixhawk boards, as shown
in Figure 21-(c). The generated electromagnetic field’s
effective range is less than 30 cm.

Appendix C.
Required Prerequisites (PX4)
Table 6 shows the required prerequisites to achieve, as
the attack’s goal, “physical crash”.
Appendix D.
Conditions to Trigger Fail-safe Logic

As shown in Figure 22, ArduPilot does not specify
a specific order of fail-safe logic. Instead, ArduPilot si-


https://tinyurl.com/2st9rphb
https://tinyurl.com/y9vurn2b
https://tinyurl.com/35nkhchw

5

ASNISH projector

5

Hackdilne

HackRF One -
U-blox M8N
— '

v/

N Pixhawk 4 Mini Pixhawk 4 Mini

(a) GPS spoofing (b) Acustic noise injection o (c) EMI injection on mag (d) Optical flow spoofing

Figure 21: Equipment for conducting attacks.

TABLE 5: Details of experiment methods and equipment

Experiment method

Attack
ac Real world‘ Simulation

Details of experiment equipment

- RV controller: Pixhawk 1 and Pixhawk 4 Mini

- GPS spoofer (hardware): HackRF One

GNSS spoofing (d) v v - GPS message generator (software): GPS-SDR-SIM
- GPS receiver: u-blox M6

- GNSS receiver: u-blox M8N

GNSS spoofing (w) X v Gazebo simulator v.11.12.0
GNSS jamming (d) X v Gazebo simulator v.11.12.0
GNSS jamming (w) X v Gazebo simulator v.11.12.0

- RV controller: Pixhawk 1 and Pixhawk 4 Mini

- Signal generator: Koolertron 30MHz DDS Signal Generator

Acoustic noise (d) v v - Amplifier: TDA8932

- DC Power: LRS-100-24

- Speaker: 2425T 25 Khz sound transducers

Acoustic noise (w) X v Gazebo simulator v.11.12.0

- RV controller: Pixhawk 4 Mini

- Electromagnetic generator: 5V Electromagnet - 25 Kg Holding Force - P40/20
- RV controller: Pixhawk 4 Mini with u-blox M8N

- Electromagnetic generator: 5V Electromagnet - 25 Kg Holding Force - P40/20

EMI injection on mag (d) v v

EMI injection on mag (w) v v

EMI injection on SPI (d) X v Gazebo simulator v.11.12.0
EMI injection on SPI (w) X v Gazebo simulator v.11.12.0

- RV controller: Pixhawk 1 and Pixhawk 4 Mini
Optical flow spoofing (d) v v - Hex HereFlow Optical Flow Sensor

- ASNISH movie projector

- RV controller: Pixhawk 1 and Pixhawk 4 Mini
Optical flow spoofing (w) v v - Hex HereFlow Optical Flow Sensor

- ASNISH movie projector

TABLE 6: Summary of required prerequisites to achieve, as the attack’s goal, “Physical crash” in PX4 and how many
real-world RV configurations satisfy the required prerequisites.

Attack prerequisites that make the attack successful / all prerequisites related to the attack How m‘a ny RV conﬁ guratlons
satisfy prerequisites?
configuration version parameter condition
M: Manual

GNSS spoofing (d)P N/A N/A N/A N/A N/A N/A 0% 0%

GNSS spoofing (w) D, R 3/6 v.1.8.0 - v.1.14.0 A 4/36 Downtown/rural  |91.06% 60.98%

GNSS jamming (d) N/A N/A N/A N/A N/A N/A 0% 0%

GNSS jamming (w) N/A N/A N/A N/A N/A N/A 0% 0%

Acoustic noise (d) D, S 3/3 v.1.8.0 - v.1.14.0 A N/A N/A 98.70% 60.93%

Acoustic noise (w) D, S 3/3 v.1.8.0 - v.1.14.0 A N/A N/A 98.70% 60.93%
EMI Injection on mag (d) N/A N/A N/A N/A N/A N/A 0% 0%
EMI Injection on mag (w) N/A N/A N/A N/A N/A N/A 0% 0%
EMI Injection on SPI (d) D,R, S 172 v.1.8.0 - v.1.14.0 A 12 N/A 99.98% 60.98%
EMI Injection on SPI (w) D,R, S 12 v.1.8.0 - v.1.14.0 A 12 N/A 99.98% 60.98%
Optical flow spoofing (d) D 172 v.1.8.0 - v.1.14.0 A 179 N/A 10.11% 0.64%
Optical flow spoofing (w) D 172 v.1.8.0 - v.1.14.0 A 1/9 N/A 10.11% 0.64%

% D: Drone, R: Rover, S: Submarine B~ d: Demonstrated attack, w: Worst-case attack



O When the following conditions hold for at least 1 second

- EKF’s vertical velocity innovation >0 __ | Vibration

- EKF’s vertical position innovation > 0 fail-safe

- EKF’s velocity variance = 1 GPS
® When the condition holds for at least 5 seconds fail-safe
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© When two of the following conditions hold for Yaw reset
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S posii var - - 1000 ms

-EKF’s velocity variance > FS_EKF_THRESH

EKEF fail-safe

Figure 22: Illustration of conditions to trigger fail-safe logic
in ArduPilot [15].

© When one of the following conditions is met
- Gyro inconsistency > EKF2_SEL_IMU_ANG _| EKF

- Accel inconsistency > EKF2_SEL_IMU_ANG L SWitch |
® When one of the following conditions is met ,,
- Roll estimated by EKF > FD_FAIL R [ Attitude || o nons |

- Pitch estimated by EKF > FD_FAIL_P

Default EKF2_SEL_IMU_ANG: 15 degrees per second
Default FD_FAIL_R & FD_FAIL_P: 60 degrees per second

fail-safe

Figure 23: Illustration of conditions to trigger fail-safe logic
in PX4 [67], [69].

multaneously checks conditions to trigger fail-safe logic
every 100 millisecond (ms) [15]. Attacks (e.g., acoustic
noise injection) almost immediately trigger the vibration
fail-safe logic because the conditions for the fail-safe logic
are not strict. Unfortunately, the vibration fail-safe logic
does not appropriately address the attacks, as explained
in Section 9.3.1. On the contrary, EKF fail-safe logic can
prevent RVs from physically crashing on the ground by
changing the flight mode to a manually-controlled flight
mode. Yet, EKF fail-safe is the last stage of the fail-safe
logic. Thus, it requires the strictest conditions.

The attacks easily trigger PX4’s EKF switching algorithm
because the conditions are not strict, as shown in Figure 23.
Yet, unfortunately, worst-case attacks disturb all homoge-
neous sensors (e.g., injected acoustic noises disturb all IMUs).
Thus, PX4’s EKF switching cannot address the attacks. On
the contrary, PX4’s conditions for attitude fail-safe logic are
too strict (60 degree errors per second in roll or pitch angles).
Thus, RVs physically crash on the ground before PX4 triggers
attitude fail-safe logic, as explained in Section 9.3.1.

Appendix E.
Experimental Setup in Case Study 1

We follow the hardware setup for generating acoustic
noises explained in [93] because it requires the most af-
fordable commodity hardware among [43], [85], [88], [89],
[93].

We obtain the following experimental conditions ex-
plained in research papers [43], [85]: (1) The RV type is a
drone. (2) Sensor configurations consist mainly of two types.
A DIY drone is equipped with a single IMU [85]. Another
type of a drone leverages a Pixhawk 2 board that is equipped

with two different IMUs [43]. (3) The tested RV software
packages are MultiWii [58], ArduPilot [4], and PX4 [66].

We exclude the DIY drone, which is equipped with a
single IMU, from our evaluations. The reason is that we
find only 2.37% RV logs (712/30,059) leveraging a single
IMU. It means that leveraging a single IMU rarely occurs
in the real world. To conduct the attacks, we use Pixhawk 1
and Pixhawk 4 Mini boards [65] that are equipped with two
different IMUs. We also exclude MultiWii software from
our evaluations because (/) MultiWii has been discontinued
since 2016; (ii) this software does not satisfy a commercial
level of RV control software (e.g., ArduPilot and PX4), as
shown in Figure 6; and (iii) we cannot find any commercial
RV using MultiWii.

Unfortunately, we still do not know the following ex-
perimental conditions: software version, flight mode, and
configuration parameter settings. To address this, we select (i)
the latest versions of RV control software (ArduPilot v.4.3.5
and PX4 v.1.13.0), (ii) Loiter flight mode [50], and (iii)
default configuration parameters.

Appendix F.
Experimental Setup in Case Study 2

We attempt to replicate electromagnetic interference
(EMI) attacks on ArduPilot and PX4 simulators because
we do not have a powerful EMI generator leveraged by
the research paper [42]. We note that EMI attacks on the
simulators are still reasonable for the two main reasons. First,
we cannot expect that RV developers have access to such
a powerful EMI generator. Second, we can still simulate
the impacts of EMI attacks (i.e., corrupting data on SPI/I2C
buses) on software-in-the-loop (SITL) simulators.

Experimental Conditions. We obtain the following experi-
mental conditions explained in the research paper [42]: (1)
The RV types are drones consisting of Arduino, Pixhawk
4, or DJI. (2) The tested RV control software packages are
MultiWii [58] and PX4 [66]. (3) Flight mode is Loiter [50].

We exclude MultiWii software from our evaluations due
to the reasons explained in Section 9.3.1. We also exclude
Arduino and DJI controller boards because (i) we cannot find
any commercial RV using Arduino, and (if) DJI’s control
software is not an open-source project. Thus, we cannot
conduct a root cause analysis.

Unfortunately, we still do not know, as experimental
conditions, the software version and configuration parameters.
To address this, we select (i) the latest versions of RV control
software (ArduPilot v.4.3.5 and PX4 v.1.13.0) and (ii) default
configuration parameters.



Appendix G.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

G.1. Summary

This paper addresses an important research problem
in CPS security, exploitability of existing robotic vehicles
using sensor attacks as the attack vector while examining
the physical state as the outcome. To do so, it presents
a systematic study on the manifestation of 12 types of
sensor attacks on various RV platforms. The hardness of
the attack is characterized using two distinct metrics: the
prerequisites needed to carry out these attacks and the real-
world prevalence of the prerequisites that make a particular
attack feasible. This paper introduces RVPROBER, an au-
tomation framework for analyzing the prerequisites of attacks.
RVPROBER identified that, on average, 4.4 prerequisites
are necessary for the 12 sensor attacks, underscoring the
tendency of prior research to overlook crucial details essential
for executing these attacks.

G.2. Scientific Contributions

o Independent Confirmation of Important Results with
Limited Prior Research

o Creates a New Tool to Enable Future Science

« Provides a Valuable Step Forward in an Established
Field

G.3. Reasons for Acceptance

1) The work is timely. Though most of the sensor
attacks have been previously presented, this work
confirms them once more, and it is great that the
authors put all these attacks together.

2) Inspired by the idea of attacks affecting robotic ve-
hicles (RVs), they created a new and better method-
ology to implement an automation framework that
measures the attack hardness by considering both
the number of prerequisites required to achieve
the attack objective and the probability that these
prerequisites exist in a typical real-world RV usage
scenario, which counts as a new tool to enable future
science.

3) Sensor/Analog attacks represent a large class of
emerging threat vectors, but how these threats will
manifest in the system as well as the physical state is
not well understood right now. This work provided a
valuable step forward by deploying successful sensor
attacks that require satisfying specific prerequisites
when examining 12 well-known sensor attacks.
Furthermore, the threat systematization is a good
start in laying the foundation for defense.
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