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ABSTRACT
Web applications use the local storage of a web browser to tem-
porarily store static resources for caching and persistently store
personalized data for stateful services. Since different web appli-
cations use the local storage differently in terms of size and time,
attackers can infer a user’s browser activity and status if they can
monitor storage usage: for example, which web site a user is view-
ing and whether a user has logged in to a certain web site. In this
paper, we explore passive and active web attacks that exploit the
Quota Management API to extract such information from a web
browser, as the API allows us to continuously monitor the size of
available storage space. We develop two web attacks: a cross-tab
activity inference attack to passively monitor which web site a user
is currently visiting and a browser status inference attack to actively
identify the browser status such as browser history and login infor-
mation. Our attacks are successful at stealing private information
from Chrome running on various platforms with ∼90% accuracy.
We further propose an effective solution against the attacks.

1. INTRODUCTION
Modern web applications heavily use the local storage of a client

web browser to temporarily store static web resources (e.g., browser
cache) and persistently store data for stateful services (e.g., cookie).
Since many multimedia and text resources composing a web page
usually do not frequently change, a web browser does not need
to repeatedly download them for each visit to avoid unnecessary
network traffic. Instead, the browser caches such resources into
its local storage and loads them from there until the corresponding
remote resources have changed. Also, a web browser needs to
keep cookie information to maintain login status and other stateful
information (e.g., items in a shopping cart).

Moreover, HTML5 provides offline storage APIs as many people
tend to use mobile devices to browse the Web, suffering from con-
nection failures or slow connection speed. For example, the APIs
allow a web application to specify resources to be cached in the
local storage of a web browser (Application Cache [18] and Service
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Worker [36]), and request an amount of storage space (quota) and
monitor how much storage space it takes (the Quota Management
API [47]).

However, such heavy usage of the local storage of a web browser
could be exploited to breach user privacy if attackers can moni-
tor it, as different web pages consist of different resources such
that their storage usage patterns are distinguishable. Researchers
have discovered that network usage patterns to download web re-
sources [5–7, 16, 17, 22, 24, 29, 33, 39, 43, 44] and memory usage
patterns to load downloaded resources [20] can be used to infer
which web site a victim browser visits. Since downloaded resources
are temporarily stored into the local storage and then loaded into the
memory, attackers have possibility to conduct similar attacks if they
can monitor storage usage patterns.

Surprisingly, we identify the Quota Management API can be
used to perform such attacks because it allows a web application
to know how much storage space remains in a user’s local device
by querying the quota of temporary storage—a shared pool among
web applications—without any user confirmation. When explaining
the quota attribute of the StorageInfo interface, the specification
states that “For temporary storage this value may reflect the actual
storage space available on the user’s local device and may change
from time to time” [47]. Further, the Quota Management API is a
JavaScript method, so attackers do not need to have access to the
network [5–7, 16, 17, 22, 24, 29, 33, 39, 43, 44] or machine [20] to
which a client web browser belongs.

In this paper, we explore how web attackers can exploit the Quota
Management API as a side channel to infer sensitive information
from web browsers. When visiting a web site, a web browser takes
a portion of local disk space to cache the resources transferred from
the web site. The time-varying amount of storage space to store
such resources differs from each other, which is the unique feature
of each web site. Therefore, by monitoring temporal changes in
the quota of temporary storage (we call it storage footprint, see
§2.2) through an attack web site, attackers can remotely determine
the feature of a web site that a victim web browser visits. For
example, Figure 1 shows temporal changes in the size of storage
footprints when we visited the front pages of four popular web sites
(google.com, facebook.com, yahoo.com, and youtube.com) by using
Chromium 34 running on an Ubuntu 12.04 desktop. The temporal
changes in the size of the storage footprints differ from each other,
so we can distinguish web sites by comparing them.

We consider two attacks using storage footprints. The first attack,
a cross-tab activity inference attack, allows an attack web site to
identify the other web site a victim web browser is currently visiting
via a different tab or window. While a victim web browser opens an
attack web page in a browser tab or window, the web page passively
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Figure 1: Temporal changes in the size of storage footprints belonging
to the front pages of four popular web sites, obtained through the Quota
Management API. Different web sites use the local storage differently in
terms of size and time.

monitors temporal changes in the size of the victim web browser’s
storage footprints to identify which web site the victim web browser
visits through a new tab or window. The accuracy of the cross-tab
activity inference attack is up to 97.3% when a victim web browser
is Chrome running on Linux (§3).

The second attack, a browser status inference attack, allows an
attack web site to identify the history and login status of a victim web
browser associated with a target web site. When accessing a web site
visited in the past, a web browser occupies no or small additional
disk space because the browser cache has already stored the web
site’s resources. By visiting a target web site while monitoring
temporal size changes in the storage footprints, an attack web site
can identify whether the browser has visited the web site before.
The accuracy of our browser history stealing attack is up to 99%
when a victim web browser is Chrome running on Android (§4.3).

Moreover, by using a similar technique, an attacker can recognize
the login status of a victim web browser. Many web sites have
privileged web pages only accessible by permitted users who belong
to some groups, companies, universities, or societies. A web browser
either cannot fully fetch the entire resources of the privileged web
page or is redirected to login or error page if it has no permission to
access the web page. By attempting to visit such a web page while
monitoring storage usage, we can recognize whether a browser has
a permission to access the web page (§4.6).

We consider a countermeasure against the explored attacks: pro-
viding coarse-grained quota information. We suggest rounding
quota size down to the nearest multiple of several kilobyte or megabyte.
Our countermeasure considerably decreases overall inference accu-
racy while introducing negligible overhead.

This work makes the following contributions:
• Novel security problem. To the best of our knowledge, this

is the first study that handles the security problems of the
Quota Management API, and considers a web side-channel
attack exploiting temporal changes in the size of available
storage space.

• Novel web attack. Our attack allows a remote web attacker to
passively monitor the current activity of a victim web browser
and to actively inspect the status of the browser.

• Effective countermeasure. We suggest an effective coun-
termeasure against our attack: a round-down method. The
countermeasure can substantially decrease attack accuracy
even in an ideal scenario while only demanding minor modifi-
cation of the Quota Management API.

The remainder of this paper is organized as follows. §2 explains
background information of our work. §3 introduces our cross-tab
activity attack. §4 introduces our browser status inference attack.

1 //Request storage usage and capacity left.
2 navigator.webkitTemporaryStorage.
3 queryUsageAndQuota(onSuccess, onError);
4

5 function onSuccess(usedSpace, remainingSpace) {
6 console.log("Used: " + usedSpace + ", remaining: " +
7 remainingSpace);
8 }

Figure 2: JavaScript pseudocode to monitor temporal changes in storage
footprint size.

§5.1 discusses countermeasures against our attacks. §6 introduces
related studies of our work. Lastly, §7 concludes this work.

2. BACKGROUND
In this section, we explain the browser cache, the Quota Manage-

ment API, and an optimal subsequence bijection algorithm.

2.1 Web Browser Cache
Modern web browsers use the browser cache for reducing network

traffic and load time of web pages. When a user first visits a web
site, the user’s web browser fetches the resources of the web site,
stores them in the browser cache, and renders and displays them on
a screen. Later, when the user visits the web site again, instead of
fetching the resources again, the web browser loads cached resources
from the browser cache if the web site does not change them.

We briefly explain resource types that Chrome caches in the
local storage. Chrome stores (1) HTTP responses from a web
site (e.g., HTML and JavaScript code, images, CSS, and media
files); (2) resources specified by a web application using AppCache
or IndexedDB; (3) SSL sessions to skip round trips of SSL hand-
shake [11]; and (4) GPU shaders to reduce GPU rendering time [40].

2.2 Quota Management API
The Quota Management API is proposed to manage and moni-

tor the available storage space in a web browser to support other
HTML5 storage APIs (e.g., AppCache [18], ServiceWorker [36],
and IndexedDB [31]). This API provides two types of storage space.
The first one is persistent storage that enables a web site to store
persistent data in a user’s local storage. The second one is temporary
storage that enables a web site to store temporary data in the local
storage. In this paper, we focus on the temporary storage which
allows an attacker to infer a user’s secret information. Also, we
consider Chrome because, up to now, only Chrome implements the
Quota Management API. 1

The temporary storage space, also known as the shared pool [14],
is freely accessible by all web applications running on Chrome with-
out any user confirmation. The temporary storage is approximately
50% of available storage space and each web application can use up
to 20% of the temporary storage. Consequently, a web application
can use up to 10% of remaining storage space.

Figure 2 describes JavaScript code that uses the Quota Manage-
ment API to check the available temporary storage space. At Line 2,
the script calls a queryUsageAndQuota() method to obtain the stor-
age information of a web browser. The method has two parameters:
success callback onSuccess() and error callback onError(). When
the method successfully obtains the temporary storage information,
it calls onSuccess(). Otherwise, it calls onError(). The success
callback function has two arguments: usedSpace to inform how
much storage space a web application occupies; remainingSpace
to inform remaining temporary storage space.

1Opera uses Chrome’s Blink engine, so it has the same problem.
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Although the Quota Management API is useful, it has security
problems because it gives the fine-grained storage space information
of a web browser to a web application. By monitoring the temporal
changes of the information, attackers can develop attack methods to
reveal sensitive user information. We will explain the details of the
attack methods in §3 and §4.

Note that the security problems considered in this paper are due to
not the security bugs of Chrome but the problems of the Quota Man-
agement API specification. Therefore, other web browsers, such
as Firefox, Internet Explorer, and Safari, are supposed to vulnera-
ble to the security problems if their vendors implement the Quota
Management API to meet the current specification.

2.3 Optimal Subsequence Bijection
We used an optimal subsequence bijection (OSB) algorithm [25,

32] to compare change logs of storage footprint size. The OSB
algorithm is a well-known algorithm not only to measure the sim-
ilarity between time-series, but also to effectively deal with noise
elements of them. Whenever a victim web browser visits a web
page, an attacker can obtain a change log of storage footprint size
that reflects the changes in available storage space size. However,
each instance of the obtained change logs slightly differs from each
other in terms of length and size due to background disk activ-
ity (§3.3.3) and network latency (§3.3.4). Unlike a dynamic time
warping (DTW) algorithm [38], another well-known algorithm to
compare time-series, the OSB algorithm can skip outliers of query
and target time-series, making the inference accuracy of our attacks
better. We compared the OSB algorithm with the DTW algorithm
in our evaluation settings (§3); the OSB algorithm always showed
better accuracy than the DTW algorithm. Consequently, we decided
to use the OSB algorithm for our attacks.

3. CROSS-TAB ACTIVITY INFERENCE
In this section, we explain assumptions we have made and a

passive attack to infer a user’s current browsing activity in a different
tab or window, called as a cross-tab activity inference attack.

3.1 Threat Model
We assume an attacker who prepares an attack web site to deceive

visitors and runs attack scripts in a background tab. The attack web
site could be a compromised web site, a phishing web site, or a semi-
honest web site that tracks its users browsing patterns. The attacker’s
goal is to know the very next web site the visitor will visit to know
detailed information of the visitor in real time, which can be used
to perform targeted attacks (e.g., spear phishing and personalized
advertisement). The attacker does not compromise the network or
machine a visitor is currently using, so the attacker cannot analyze
network traffic [5–7, 16, 17, 22, 24, 29, 33, 39, 43, 44] and monitor
local resource usage [8, 20, 27] to achieve the goal. Further, a
visitor’s browser has no well-known vulnerability such that the
attacker cannot break the same origin policy.

3.2 Attack Procedure
We explain the procedure of our cross-tab activity inference attack

that exploits storage footprints with Figure 3.
1. A victim opens a browser tab to visit an attack site Attack.com

to view or download interesting contents.
2. Attack.com deceives the victim into keeping the tab open

and initiates a monitoring script (Figure 4). For example,
many web sites display countdown timers to expose advertise-
ments for a long time before delivering actual contents, such
as one-click hosting sites (e.g., rapidshare.com) and URL
shortening services (e.g., adf.ly).

Figure 3: The procedure of a cross-tab activity inference attack using storage
footprints. We assume that a victim visits Site.com via the front tab while
maintaining a background tab for Attack.com.

1 document.addEventListener(’visibilitychange’, function(event) {
2 if (document.hidden) {
3 // This web page is hidden. Initiate monitoring.
4 navigator.webkitTemporaryStorage.
5 queryUsageAndQuota(onSuccess, onError);
6 }
7 });
8

9 function onSuccess(usedSpace, remainingSpace) {
10 // Post "remainingSpace" and current time to an attack server.
11 navigator.webkitTemporaryStorage.
12 queryUsageAndQuota(onSuccess, onError);
13 }

Figure 4: Pseudocode to infer sensitive user information with the Quota
Management API.

3. The victim opens a new browser tab or window to visit another
web site Site.com.

4. When the monitoring script recognizes that the tab of At-
tack.com becomes a background tab, it starts to continuously
record changes in storage footprint size.

5. The victim web browser fetches the resources of Site.com and
stores them in the browser cache.

6. The script sends the change log of storage footprint size to
Attack.com. The attacker can infer that the web page the
victim has visited is Site.com by comparing the change log of
storage footprint size with the database.

Figure 4 describes a monitoring script to record a change log of
storage footprint size. At Lines 1–7, the script declares an event
handler of the Page Visibility API [30] to recognize whether a
victim visits another web site or stays in an attack web site. When
the victim visits another web site via a new tab, the tab of the
attack web site becomes invisible and the script starts to recursively
call queryStorageState() to log the changes in the size of storage
footprints.

3.3 Identifying Non-cached Web Sites
We first consider the cross-tab activity inference attack against

web sites a victim web browser has not recently visited (i.e., not
cached or cold). Assuming non-cached web sites increases the
inference accuracy of our attack because a web browser has to fetch
their entire resources and store them into the local storage.

3.3.1 Data collection
We prepared attack databases by collecting storage footprints of

candidate web sites a victim web browser highly likely visits on
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Linux Windows Android
OS Ubuntu 12.04 Windows 7 Android 4.0
Web browser Chromium 34 Chrome 34 Chrome 34

Table 1: Experiment environment.

Algorithm 1 Matching algorithm
Input: A storage footprint database D, a victim’s storage footprint
fv
Output: the inferred web page

dmin ← ∞ // the minimum distance
pc ← none // a candidate page
for each page p in D do

for each storage footprint fp of p in D do
d = OSB(fv, fp) // compute a distance
if d < dmin then

dmin ← d
pc ← p

return pc

three different target platforms with Linux, Windows, and Android
(Table 1). The data collection procedure for each front page of
Alexa Top 100 web sites is as follows. First, using a Chrome web
browser, we visit our attack page and then open one of the front
page via a new tab. Second, we monitor temporal changes in storage
footprint size for one minute (because we cannot know for sure when
page loading finishes.) Third, we send the change log to our attack
server. Lastly, we clear the browser cache for later experiments. We
repeat this procedure 10 times for each front page on each platform
and regard the 1000 change logs of storage footprint size per each
platform as attack databases. The average size of storage footprints
is approximately 3 KiB. Note that we use Chrome’s default browser
settings when collecting data, namely, we do not modify any settings
such as cache size and privacy settings.

3.3.2 Inference accuracy
To evaluate the inference accuracy of our cross-tab activity in-

ference attack against non-cached web sites, we visited each front
page of Alexa Top 100 web sites 10 times on each platform, and
compared their storage footprints with the attack databases by using
Algorithm 1. As shown in Figure 5, Linux achieves the highest
inference accuracy among the three platforms (97.3%) whereas Win-
dows achieves the lowest inference accuracy (86.3%). We presume
that background disk activity (§3.3.3) and wireless network (§3.3.4)
make Windows and Android have lower inference accuracy than
that of Linux, respectively.

3.3.3 Background disk activity
We anticipate that the lower inference accuracy of our attack on

Windows than on Linux and Android is due to frequent background
disk activity of Windows. Frequent disk activity (specifically, writ-
ing activity) can spoil our cross-tab activity inference attack because
it monitors available storage space size. We measured background
disk activity of the three operating systems by monitoring their stor-
age footprints and compared them in terms of idle period where no
changes in storage footprint size are observed. Figure 6 shows idle
period statistics of the three operating systems. The average idle
periods of Android, Linux, and Windows are 67 s, 22.5 s, and 1.5 s,
respectively. From these results, we conclude that change logs of
storage footprint size derived from Windows contain a large amount
of noise.
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Figure 5: Inference accuracy of cross-tab activity inference attacks against
victim web browsers that visit the front pages of Alexa Top 100 sites on
Linux (LAN), Android (Wi-Fi), and Windows (LAN). Error bars represent
95% confidence intervals. An attack against Linux showed the best accuracy.
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Figure 6: Statistics of idle periods that the size of storage footprints main-
tains in each OS during one hour. Windows suffered from frequent back-
ground disk activity.

To exclude the effects of background disk activity, we changed
the location of the Chrome browser cache to a separate disk and eval-
uated the inference accuracy of cross-tab activity inference attacks
against Alexa Top 100 web sites. We used a Chrome command line
switch –disk-cache-dir for this experiment. We observe that the
inference accuracy on Windows increases by 1.06× when we use
the separate disk cache whereas Linux has no benefit (Figure 7).
Therefore, the low inference accuracy of cross-tab activity inference
attacks on Windows is due to heavy background disk activity.

3.3.4 Wireless network
We think the reason of the lower inference accuracy of our attack

on Android than Linux is different network condition: Wi-Fi versus
LAN. Network condition can affect the inference accuracy of our
attack on Android because it usually uses Wi-Fi or cellular network
whose network latency is less stable than that of a wired LAN. To
analyze how network condition affects the inference accuracy of
our cross-tab activity inference attack, we conducted our attack on
Wi-Fi and LAN. Figure 8 shows the inference accuracy of our attack
when visiting the front web pages of Alexa Top 100 web sites. The
inference accuracy of our attack on Wi-Fi are 1.03×–1.05× lower
than on LAN. Thus, we conclude that the bad network condition
makes the inference accuracy on Android worse than that on Linux.

3.3.5 Early inference
The evaluation on the cross-tab activity inference attack explained

so far has a shortcoming: it monitors changes in storage footprint
size for one minute, but attackers cannot guarantee that a victim
stays in a web page for more than one minute. To analyze how
fast our attack can infer a web page visited by a victim, we varied
monitoring time from 3 s to 60 s when attacking Alexa Top 100
web sites. As shown in Figure 9, when we monitor storage footprint
size changes for approximately 5 s on Linux and Windows and for
approximately 10 s on Android, the inference accuracy of our attack
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Figure 7: Inference accuracy of cross-tab activity inference with separate
disk cache to ignore background disk activity. The separate disk cache
increased the inference accuracy on Windows; namely, Windows suffered
from the background disk activity.
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Figure 8: Accuracy of cross-tab activity inference attacks in wired and
Wi-Fi networks. Using Wi-Fi slightly decreased the inference accuracy.

becomes around 90%. Thus, when conducting cross-tab activity
inference attacks, attackers only need to assume a victim who stays
in an attack page for more than 10 s.

Interestingly, on Windows, we observe the highest inference
accuracy (89%) when monitoring storage footprint size changes
for 20 s and decrease of inference accuracy as monitoring time
increases (Figure 9). Windows has frequent background disk activity
as explained in §3.3.3, so prolonging a monitoring period decreases
the inference accuracy.

3.4 Identifying Web Sites Visited via Tor
Internet users can use an anonymity network (e.g., Tor [42]) to

protect their privacy. If a victim uses an anonymity network when
visiting web sites, the accuracy of our cross-tab activity inference at-
tacks would decrease because of long and unstable network latency.

To evaluate how an anonymity network affects the accuracy of our
cross-tab activity inference attack, we conducted our attack against
web sites visited through Tor. We adjusted the MaxCircuitDirtiness
option of Tor to change a virtual circuit whenever we visit a web site.
Figure 10 shows the inference accuracy of our attack when visiting
the front web pages of Alexa Top 100 web sites. The inference
accuracy of our attack on Linux and Windows is 80.3% and 73.0%,
respectively.

We analyze why our cross-tab activity inference attack in a Tor
network shows lower inference accuracy than that in a normal net-
work, and figure out two reasons. First, Tor can change the geo-
graphical location of a victim web browser (an IP address belongs
to a different country.) Many web sites customize their content ac-
cording to the country information of visitors, so storage footprints
of the browser can be completely changed even when it visits the
same web site. To overcome it, an attacker should prepare a huge
storage footprint database that covers a large number of countries.
Second, we identify that a web browser on Tor occasionally cannot

0 10 20 30 40 50 60

Time (s)

60

70

80

90

100

In
fe

re
n

ce
 a

cc
u

ra
cy

 (
%

)

Linux

Windows

Android

Figure 9: Accuracy of cross-tab activity inference attacks according to the
length of monitoring time window. In Linux and Android, the inference
accuracy became better as the length of monitoring time window increased,
but, in Windows, the inference accuracy became worse due to the background
disk activity.
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Figure 10: Accuracy of cross-tab activity inference attacks via Tor on
Linux and Windows. Using Tor decreased the inference accuracy due to its
geographical differences and network noise.

fetch all resources of a web page in one minute due to the long and
unstable latency of Tor. An attacker needs to prolong monitoring
time to mitigate the second problem.

3.5 Identifying Cached Web Sites
Next, we perform our cross-tab activity inference attacks against

web sites that are stored in the browser cache (i.e., warm). When
a web browser visits a cached web site again, it only fetches and
stores dynamic or updated resources of the web site. Thus, a change
log of storage footprint size would contain restrictive information.
We expect that the inference accuracy of our attack decreases when
a victim visits cached web sites.

We prepared attack databases that contain change logs of storage
footprint size when visiting cached Alexa Top 100 web sites, and
compare the attack databases with a victim’s visits for inference.
Note that we did not test it with Tor because it usually does not cache
web resources. We consecutively visited each web site 10 times for
each platform while clearing the browser cache only before visiting
a web site for the first time. Figure 11 shows the inference accuracy
of our attack when a victim visits the front web pages of Alexa Top
100 web sites that are already cached. As expected, we observed
decreased inference accuracy: 70.5% (Linux), 65.8% (Android),
and 60% (Windows).

3.6 Summary
As shown in §3.3.3, §3.3.4, §3.4, and §3.5, background noise

in disk and network, Tor, and heavy usage of the browser cache
(e.g., increasing the browser cache size) can mitigate our cross-
tab activity inference attacks, but we still have a chance to infer a
victim’s activity. A robust and effective countermeasure against our
attack will be introduced in §5.1.

4. BROWSER STATUS INFERENCE
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Figure 11: Accuracy of cross-tab activity inference attacks against cached
web pages. The inference accuracy decreased because a browser did not
fetch cached resources.

Figure 12: The procedure of a browser status inference attack using storage
footprints. When a victim visits Attack.com, it creates a hidden tab to inspect
browser status toward any web sites.

In this section, we explain how we can use storage footprints to
develop two active attacks to infer browser status: browser history
stealing and login status identification. Our browser status infer-
ence attacks resemble conventional cache timing attacks [4, 10, 19].
However, the accuracy of our attacks is better than the conventional
attacks because our attacks use the total size of newly fetched re-
sources that is not affected by network condition. In contrast, the
cache timing attacks are highly vulnerable to network condition (see
§4.5).

4.1 Threat Model
The threat model of the browser status inference attack is basi-

cally the same as §3.1, but an attacker has a slightly different goal:
inferring browser history and login status. To obtain such informa-
tion, the attacker generates additional requests to other web sites
under consideration.

4.2 Attack Procedure
Figure 12 depicts the procedure of our browser status inference

attack. This attack’s procedure is almost the same as the procedure
of our cross-tab activity inference attack except the methods to
visit a target web site Target.com and to compare storage footprints
differ. First, an attack script directly loads Target.com by using
Prerendering [15], which allows a web application to preload a web
page in a hidden browser tab. Second, an attacker uses the peak size
of storage footprints instead of the change logs of storage footprint
size to identify the status of a target web site.

4.2.1 Prefetching and prerendering

1 var PrerenderTimer;
2 var URL = ["google.com", "facebook.com", ...];
3 var idx = 0;
4

5 PrerenderTimer = setInterval("prerenderURL()",10000);
6

7 function prerenderURL() {
8 create_prerender(URL[idx]);
9 idx++;

10 }
11

12 function create_prerender(url) {
13 var link = document.getElementById(’prerendering’) ||
14 document.createElement(’link’);
15

16 link.id = ’prerendering’;
17 link.rel = ’prerender’;
18 link.href = url;
19

20 document.body.appendChild(link);
21 }

Figure 13: JavaScript pseudocode to prerender target web sites.

Modern web browser supports two functions, prefetching and pre-
rendering, to reduce loading and processing time of web pages. First,
prefetching makes a web browser preemptively download resources
of a web page, but it only reduces network delay. A web site can
prefetch a resource by using <link rel="prefetch" href="[URL]">.

Second, prerendering makes a web browser preload a web page
in a hidden browser tab and display the loaded web page when a
user attempts to visit the web page. Thus, prerendering can reduce
network and rendering delay. A web site can preload a web page by
using <link rel="prerender" href="[URL]">.

Figure 13 shows JavaScript pseudocode to prerender target web
sites. At Line 2, an array URL contains a list of web pages to be
inspected. At Line 5, the script defines PrerenderTimer to period-
ically call prerenderURL() (at Line 7). At Lines 7–10, the script
prerenders a new web page every 10 s by dynamically inserting a
link tag into an attack web page (at Lines 12–21).

Instead of prerendering, an attacker can use an iframe tag to
load a web page. However, a web page can prevent an iframe
tag from including itself by using either an HTTP header field
X-Frame-Options [35] or frame busting code [37]. Therefore, we do
not use an iframe tag when conducting our browser status inference
attacks.

4.2.2 Peak size of storage footprints
We use the peak size of storage footprints to identify whether a

victim web browser has visited a web site rather than OSB. When
a victim visits a web site that he or she has visited before, many
resources of the web site are already stored in the browser cache
such that the victim web browser only downloads changed or dy-
namic resources of the web site. Definitely, the peak size of storage
footprints in such a case is smaller than that when a victim firstly
visits the web site. Using the peak size can avoid the computation
overhead of OSB and shows enough accuracy as explained in the
following sections.

4.3 History Stealing in a Normal Network
We first consider how our browser status inference attack success-

fully identifies browser history in a normal network.

4.3.1 Data collection
We collected the peak size of storage footprints of the non-cached

front pages of Alexa Top 500 web sites on three different platforms
(Linux, Windows, and Android) and treated them as attack databases.
A data collection procedure for each front page of Alexa Top 500
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Figure 14: Inference accuracy of browser history stealing (Alexa Top 500
sites). We always observed high inference accuracy regardless of OSes.

Windows Linux
0

20

40

60

80

100

In
fe

re
n

ce
 a

cc
u

ra
cy

 (
%

)

96.3
91.2

Figure 15: Inference accuracy of browser history stealing via Tor (Alexa
Top 500 sites). The attack on Linux showed slightly worse accuracy due to
frequent geographical changes in Tor.

web sites is as follows. First, using a Chrome web browser, we
visit our attack page that uses Prerendering to visit the front page.
Second, we monitor temporal changes in the size of storage foot-
prints for 10 s. Third, we inform an attack server of the peak size of
storage footprints. Lastly, we clear the browser cache. We repeated
this procedure five times for each front page on each platform and
regarded the 2,500 peak size values of storage footprints per each
platform as attack databases.

4.3.2 Inference accuracy
To evaluate the inference accuracy of our history stealing attack,

we visited each front page of Alexa Top 500 web sites five times
on each platform and compared the peak size of storage footprints
for each front page with that for each non-cached front page stored
in the attack databases. Let µp and σp are mean and standard
deviation of the peak size values of a web page p stored in the attack
databases. Also, let sp is the peak size of storage footprints when
a victim web browser visits p. If sp < µp − σp, we treat that the
victim web browser has visited p before. Otherwise, we treat that
the victim web browser has not visited p. This treatment resembles
the distinguishability defined in [20].

We identify that the inference accuracy of our history stealing
attack is considerably high. As shown in Figure 14, the inference
accuracy of our attack against the front web pages of Alexa Top 500
web sites on the three platforms is 98.5% (Android), 97.7% (Linux),
and 97.3% (Windows).

4.4 History Stealing in a Tor Network
Next, we consider browser history stealing in a Tor network.

Figure 15 shows results of browser history stealing for front pages
of Alexa Top 500 web sites on Windows and Linux. Inference
accuracy of our attack on Windows and Linux is 96.3% and 91.2%,
respectively.

We analyze why the inference accuracy of our attack in a Tor
network decreases and identify that it is due to changes of the
geographical location of a victim web browser by Tor as explained

1 function create_iframe() {
2 var webpage = document.createElement(’iframe’);
3 webpage.setAttribute(’start’, new Date().getTime());
4 webpage.src = URL[Url_count];
5

6 webpage.onload = function () {
7 var end = new Date().getTime();
8 var load = end - this.getAttribute(’start’);
9

10 // Send "load" to an attack server.
11

12 this.parentNode.removeChild(this);
13 ...
14 create_iframe();
15 }
16 }

Figure 16: Javascript pseudocode to measure load time of web pages to
steal the browser history.
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Figure 17: Inference accuracy of browser history stealing using storage
footprints and using timing attacks on Linux (Alexa Top 200 sites). Our
attack was better than the timing attacks.

in §3.4. When a web site provides different contents according to
the country information of a web browser, the resources of the web
site cached in the browser are no longer valid if the browser moves
to a different country. The web browser needs to re-download the
resources of the web site prepared for the country, so the peak size
of storage footprint does not reduce.

4.5 Comparison with Timing Attack
We compare history stealing using storage footprints with a con-

ventional cache timing attack. Figure 16 shows JavaScript pseu-
docode to infer the browser history of a victim web browser by
measuring page load time [21].

We evaluate the inference accuracy of the timing attack by using
the front web pages of Alexa Top 200 web sites on Linux. The
methods to collect data and to evaluate the inference accuracy are
the same as those of §4.3 except that we measure page loading time
for the timing attack instead of the peak size of storage footprints.

Figure 17 shows that the inference accuracy of our history stealing
attack using storage footprints is 1.2× (LAN) and 1.4× (Wi-Fi)
higher than that of the cache timing attack, respectively. Further,
Figure 17 shows that the inference accuracy of our history stealing
attack is not affected by network condition, whereas the inference
accuracy of the timing attack slightly decreases when a victim web
browser uses Wi-Fi.

4.6 Login Status Identification
We explain an attack to infer the login status of a victim web

browser by using the peak size of storage footprints. Many web sites
have personalized web pages whose contents are changed or pro-
hibited according to whether a web browser has login information.
Thus, we expect that the peak size of storage footprints belonging
to such web pages is also changed according to the login status.
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(a) Non-cached

(b) Cached
Figure 18: Differences in the peak size of storage footprints for 20 web
pages according to the login status. The 20 web pages are the front web
pages of web sites highly ranked at Alexa. In all cases, we were able to
recognize login status.

Inspecting whether a victim is logged in to web sites for specific
people (e.g., company, university, and society web sites) allows an
attacker to infer the identity and preference of the victim.

We aim to identify the login status of a victim web browser for
20 popular web sites highly ranked in Alexa Top web sites that we
already have accounts on them (details: Appendix §A).

We measured the peak size of storage footprints when visiting non-
cached and cached web pages without and with login information
10 times on Linux, respectively. The results show that the difference
between the peak size values of the same web pages without and
with login information is high; their 95% confidence intervals do
not overlap (Figure 18). Accordingly, we can distinguish whether a
victim browser has login information of all web sites checked.

4.7 Friendship and Group Membership Iden-
tification on Facebook

We explain an attack to identify the friendship and group mem-
bership of a victim on Facebook, using the changed peak size of
storage footprints for the same web page according to user permis-
sion. Facebook allows users to create private web pages that only
permitted users can access. For example, if a Facebook user makes
her timeline private, only her friends can view all contents on her
timeline. Moreover, if a Facebook group manager makes the group
secret or closed [9], only the group members can view the contents
posted to the group page. When a Facebook user visits secret or
closed group pages that the user does not belong to, the user re-
ceives an error page (secret) or a page that lists the group members
with their profile photos (closed). In other words, according to user
permission, a web browser that visits such web pages would store

(a) Non-cache

(b) Cached
Figure 19: Differences in the peak size of storage footprints when we visit
the timeline of nine Facebook users (three private, three mostly private, and
three public users) as a friend of the users or as not a friend of the users.
Except H, we were able to recognize whether a victim was a friend of the
Facebook users or not.

different resources in the local storage. Consequently, the peak size
of storage footprints is also changed according to user permission.

4.7.1 Friendship
First, we attempt to identify the Facebook friendship of a victim

web browser’s user. We choose nine Facebook users who make their
timelines private, mostly private, and public (three users for each
type), and visit their timelines as a friend and not a friend 10 times
on Linux, respectively. As shown in Figure 19, we can distinguish
the peak size values of storage footprints for the same timelines
visited as a friend and as not a friend except a cached public timeline
H .

Interestingly, we observe difference between the peak size values
of storage footprints for public Facebook timelines visited as a friend
and as not a friend. When visiting a public Facebook timeline, a
friend receives resources belonging a “Write something” box to post
on the timeline whereas a non-friend receives resources belonging
to an “Add Friend” box to be a friend. This makes the difference in
the peak size values of storage footprints.

4.7.2 Group membership
Next, we attempt to identify the Facebook group membership

of a victim web browser’s user. We choose nine Facebook groups:
three secret, three closed, and three public groups, and visited the
group pages as a member and as not a member 10 times on Linux,
respectively. Figure 20 shows that we can distinguish the peak size
values of storage footprints for the same groups visited as a member
and not a member except a cached public group H .

5. DISCUSSION

5.1 Countermeasure: Round Down
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(a) Non-cached

(b) Cached
Figure 20: Differences in the peak size of storage footprints when we visit
nine Facebook groups (three secret, three closed, and three public groups)
as a member of the groups or as not a member of the groups. Except H,
we were able to recognize whether a victim was a member of the Facebook
groups or not.
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Figure 21: Accuracy of cross-tab activity inference attacks according to the
size of round down (Alexa Top 500). The round down size of 200 KiB made
the attack almost meaningless.

In this section, we explain a round-down method that can effec-
tively mitigate our attacks. For example, when the remaining storage
space of a victim web browser is 99.9 MiB and a web application
queries the quota of temporary storage, the current Quota Manage-
ment API informs the web application that the quota is 9.99 MiB.
Instead of such an exact number, our proposal rounds the quota
value down to the nearest multiple of a unit. For example, when we
use 100 KiB as a unit of round down, the returned quota would be
9.9 MiB. Although our proposal can waste storage space according
to the size of round down, it can effectively decrease the inference
accuracy of our attacks as shown in the following evaluation results.
Cross-tab activity inference attack. Figure 21 shows that the
accuracy of our cross-tab activity inference attack decreases as the
round-down size increases. For example, when we round quota
values down the nearest multiple of 20 KiB, the inference accuracy
of our attack on Linux, Windows, and Android decreases to 20%,
27.75%, and 9.15%, respectively. Furthermore, when we round
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Figure 22: Inference accuracy of browser history stealing according to the
size of round down (Alexa Top 500). The round down size of 1 MiB made
the attack almost meaningless.
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Figure 23: Statistics of the peak size of storage footprints belonging to the
front pages of Alexa Top 1,000 sites.

quota values down to the nearest multiple of 200 KiB, the inference
accuracy of our attack on Linux, Windows, and Android decreases
to 0.75%, 1.65%, and 0.25%, respectively.
Browser status inference attack. Figure 22 shows that the infer-
ence accuracy of our history stealing attack also decreases as the
round-down size increases, but the size of round down is larger than
that for our cross-tab activity inference attack (Figure 21). Unlike
the cross-tab activity inference attack, the history stealing attack only
uses the peak size of storage footprints, so minor changes in quota
values cannot effectively decrease its inference accuracy. When we
round quota values down to the nearest multiple of 256 KiB, the
inference accuracy of our attack on Linux, Windows, and Android
decreases to 31.8%, 90.0%, and 3.0%, respectively. Here, Windows
still maintains good accuracy, since the average peak size of storage
footprints on Windows is larger than 2.5 MiB unlike Linux and An-
droid (Figure 23). However, when we round quota values down to
the nearest multiple of 1 MiB, the inference accuracy of our attack
on Linux, Windows, and Android decreases to 1.2%, 0.4%, and
0.0%, respectively.

Consequently, we suggest that the Quota Management API needs
to round quota values down to the nearest multiple of 1 MiB to
completely spoil our attack (the round-down size for login status
identification is below 1 MiB, so we skip to explain it.) On average,
our countermeasure will waste approximately 0.5 MiB of storage
space for each web application that uses temporary storage.

5.2 Realistic Evaluation
In this paper we assume a less realistic evaluation environment

which is too friendly to attackers: a victim visits one of Alexa Top
100 web sites (closed world), does not use multiple tabs to visits
several web sites simultaneously, and does not generate significant
background traffic (e.g., downloading a huge file). Definitely, this is
an unrealistic assumption as criticized by other researchers [22, 34]
and the inference accuracy would decrease when we assume open
world.
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However, what we want to emphasize is that even if we do not as-
sume a strong adversary who can monitor a victim’s network traffic,
our attack shows high inference accuracy comparable with previous
attacks under the similar attacker-friendly evaluation settings [6].
Making this kind of attacks work well with a realistic environment
is out of scope of this paper and several researchers have already
considered it [16, 24, 33, 44].

Furthermore, our countermeasure (§5.1) successfully prevents
all the attacks we explained even under such an attacker-friendly
environment. This countermeasure certainly works well in the real
world without any problem. Therefore, we believe whether we
evaluate our attacks with realistic or unrealistic assumptions is not a
critical problem.

6. RELATED WORK
In this section we introduce previous side channel attacks to

identify browser activity and status.
CSS visited style. A CSS-based attack [2] uses style difference be-
tween visited and unvisited links to infer the history of a victim web
browser. This attack can directly access the history information of a
victim web browser, so it can accurately identify the browser history
unlike other relatively inaccurate attacks (e.g., attacks using network
traffic or timing). Wondracek et al. [46] further extend this attack
to infer the real identity of a victim by using the information about
visited groups in OSNs. Baron [3] proposes an effective counter-
measure that pretends all links are unvisited when a script attempts
to inspect link styles. All major browsers adopt the countermeasure
so that CSS-based attacks are no longer effective. To circumvent the
solution, Weinberg et al. [45] use a webcam and user interaction,
but it is difficult to be realized.
Timing information. A timing attack measures how long it takes
to load web pages to infer a victim’s browsing history and other
private information. Felten and Schneider [10] firstly propose tim-
ing attacks using the web cache and DNS cache to infer the web
pages that a victim web browser has recently visited. Bortz et
al. [4] further reveal that an attacker can infer the login status of
a victim and the number of items in a victim’s shopping cart by
measuring the loading time of web pages. Jia et al. [21] propose an
advanced timing attack that measures the loading time of web pages
containing location-sensitive contents to infer a victim’s location in-
formation. In addition, researchers propose scriptless timing attacks
using meta-refresh tag [1] and CSS [28]. Timing attacks, however,
are error prone especially when network condition is bad. To cir-
cumvent the problem, Goethem et al. [12] propose new web-based
timing attacks that can estimate the size of cross-origin resources
regardless of network conditions.
Vulnerable API. Researchers consider side-channel attacks using
vulnerable APIs of HTML5 and CSS as we exploited the Quota
Management API. Kotcher et al. [23] propose two timing attacks us-
ing CSS filters. They infer the login status of a victim by measuring
the frame rate of a web page through requestAnimationFrame. Fur-
ther, they infer rendered pixels of a web page on the victim’s screen
by measuring the frame rate of each pixel. However, their attacks
are slow and inaccurate. Tian et al. [41] identify that by using the
Screen Sharing API, attackers can peek at a victim’s screen and per-
form cross-site request forgery (CSRF) and history stealing attacks.
This attack assumes a strong adversary who can obtain permission
to use the Screen Sharing API from a victim and extract sensitive
information from a video stream. Lee et al. [26] discover that by
using the Application Cache API, attackers can check the status of
cross-origin resources even without using client-side scripts. But,

this attack does not work when target web sites make all of their
content dynamic, as Facebook and Twitter do.

Concurrently and independently to our work, Goethem et al. [13]
proposed attacks to infer the size of cross-origin resources using
the ServiceWorker and Quota Management API. Although the side
channel found by them and us are similar, we consider not only
active attacks but also passive attacks to monitor victim user’s real-
time behavior without generating any additional resource requests
to target web sites. In contrast, Goethem et al. mainly focus on
active attacks to probe cross-origin resource size, which are similar
with §4.6 and §4.7.
Network traffic. Numerous researchers [5–7, 16, 17, 22, 24, 29,
33, 39, 43, 44] identify that network traffic analysis allows attackers
to infer which web site a victim is visiting even when the victim
protects web traffic by using HTTPS or Tor. Various information
of protected web traffic, such as packet timing, ordering, and size,
can be used for inference. But, these attacks have limitations: they
assume a strong adversary who can monitor network traffic and can
attack victims in such a monitored network.
Local resource. Researchers consider side-channel attacks using
a victim’s local resources, such as memory, power-consumption,
and GPU. Jana and Shmatikov [20] demonstrate that a malicious
application can know which web site a victim web browser has
visited by monitoring memory footprints of the browser through a
proc file system. Clark et al. [8] measure the power consumption
of a victim’s machine to identify a visited web site. Michalevsky et
al. [32] also analyze a smartphone’s power usage to infer location
of a mobile device. Lee et al. [27] analyze a GPU memory dump
containing web page textures to recognize which web site a victim
web browser has visited. The explained attacks, however, assume
a strong adversary who can access the local resources of a victim
web browser. An adversary needs to have a right to execute a
process on the operating system on which a victim web browser is
running [20, 27] or have access to the physical machine on which a
victim web browser is running [8].

7. CONCLUSION
In this paper, we introduced a novel side-channel attack using the

Quota Management API. Analyzing storage footprints obtained by
using the Quota Management API allows a web attacker to identify
which web site a victim web browser is currently visiting and the
status of a victim web browser. We confirmed that the inference
accuracy of our attacks is high: above 90% in many cases. To
mitigate our attack, we suggested a round-down method that can
substantially decrease the accuracy of our attacks while demanding
minor modifications of the Quota Management API.
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APPENDIX
A URLs of identifying login status

Web site URL
google.com https://mail.google.com/mail/u/0/#inbox
facebook.com https://www.facebook.com
youtube.com http://www.youtube.com/feed/history
yahoo.com https://us-mg5.mail.yahoo.com/neo/launch?reason=

ignore&rs=1
amazon.com https://www.amazon.com/gp/yourstore?ie=UTF8&

ref_=gno_recs
linkdin.com https://www.linkedin.com/profile/view?id=

[ANONYMIZED]&trk=nav_responsive_tab_profile_pic
ebay.com http://cart.payments.ebay.com/sc/view
twitter.com https://twitter.com/following
pinterest.com http://www.pinterest.com
live.com https://blu184.mail.live.com/default.aspx?id=64855#

fid=flin
instagram.com https://instagram.com/accounts/edit
cnn.com http://edition.cnn.com/profile/#mynewstop
paypal.com https://www.paypal.com/webapps/customerprofile/

summary.view
tumblr.com https://www.tumblr.com/settings/blog
reddit.com http://www.reddit.com/user/[ANONYMIZED]/hidden
imgur.com http://imgur.com/account/settings/password
wordpress.com https://[ANONYMIZED].wordpress.com/wp-admin/

post.php?post=6&action=edit&message=6&postpost=v2
imdb.com http://www.imdb.com/profile/recently-viewed?ref_=

nv_usr_rvi_5
weather.com https://profile.weather.com/#/profile/manage
aol.com https://account.aol.com/account/settings/start

Table 2: URLs of identifying login status (20 popular web sites in Alexa).
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