PGFUZZ: Policy-Guided Fuzzing
for Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen,
Antonio Bianchi, Z. Berkay Celik, and Dongyan Xu

Purdue University

NDSS 2021

Plﬁ]E \ , @

UNIVERSITY PurSeclLab

Workflow of robotic vehicles (RV)

Background (1/3)

* Physical space

* Attitude, altitude, speed, etc.
* Cyber space

* Measuring the RV’s current states

* Adjusting actuators to reach target states

Physical

Three types
of inputs

(Environment
factors

\4

‘o

Sensor data

Cyber space

space

A 4

T~

&
1 l(%,Q.
) il
(Parameters

For control

algorithm

[
»

Vehicle

[

- Current altitude: 20 m
- Target altitude: 10 m

)

v

gatherin
- Control
@ 0 é algorithm

(3]

(Commands

to actuators ﬁ Decreasing motors’]

k Z uﬂ} speed to lower altitude

> PURDUE 335 @)\ usects

Background (2/3)

Fuzzers for robotic vehicles (RV)

* Rule:

* “Fail-safe mode must be triggered when the engine temperature
IS higher than 100 C° (212 F°)”

// Developers forget to convert F° to C° scale < — =1 Can traditional fuzzers (AFL, libFuzzer) |
If (temperature >= 100) { : discover such a design flaw? No :
Fail-Safe -> execute(); I - Mutation: Code coverage |
. : iolati I

} /\ L Bug oracle: Memory access violation ,

Fai-safe is triggered | ST TT-TToToTTmTTmTTTTT
under 100 F° (37 C°).

s PURDUE 339 @)\ rusects

Background (3/3)

Fuzzers for robotic vehicles (RV)

« Can fuzzers specialized for RVs discover the design flaw?
* RVFUZZER, CPI, etc.

o o I I
// Developers forget to convert F° to C° scale < : What about fuzzers for RVs? No

4 (te.mperature >=100){ I - Mutation & Bug oracle: unstable attitude |
Fail-Safe -> execute(); e e m e e e e — = =]

} /\
Fail-safe is triggered
under 100 F° (37 C°).

: \ RVFUZZER: “Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing,” in USENIX, 2019.
+ PURDUE 3G9 @rusecas

CPI: “Cyber-physical inconsistency vulnerability identification for safety checks in robotic vehicles,” in CCS 2020.

Overview of PGFUZZ

* Previous works do not
* Know the RV'’s correct behaviors
* Consider entire input space

« PGFUZZ

Reducing
Fuzzing
space

Defining correct
behaviors of RVs

Creating Discover bugs

formulas

Mutating
inputs

Building
distance
metrics

- Behavior-aware bug oracle
- Policy-guided mutation

s PURDUE 35 (@) rusects

Defining RV’s

Defining policies in formulas cortect behaviors

—3 f Extract policies
— 'Ldenoted by formulas

Documents

“ A vehicle must not deploy a parachute when the venhicle is:
1) In FLIP or ACRO flight modes

2) Climbi
e L

Never \‘
- {(Parachute=on)} A {(Mode, = FLIP/ACRO) V {ALTt > ALTt—1)|}

and or

time T time T-1

, . The formula is created in the form of Metric temporal logic (MTL).
s PURDUE 35 @)\ usects

Reducing fuzzing

Finding inputs for mutation Space (1/d)

« Huge fuzzing space
* 1,140 configuration parameters
* 58 user commands
* 168 environmental factors

« Only mutating inputs relevant to the policy

7 PURDUE % @PurSec Lab

Reducing fuzzing

Finding inputs for mutation Space (2/4)

 Policy consists of terms (physical states)
* Only mutating inputs related to the terms

« Decompose the formula into terms (states)

Term

-0 {(Parachute=on)} A {(FLIP/ACRO) V (ALT, >(ALT,_
t t

Proposition

Related terms

Flight mode

<Policy-term map>

Policy

Parachute (| Parachute

s PURDUE 35 @)\ rusects

Reducing fuzzing

Mapping parameters to each term Space (3/d)

e Static analysis to identify which states are affected by
each parameter

configuration
parameter
- Altitude SO AP_GROUPINFO(“TEMP”, ..., ground_temp): s Starting point for a def-use

Roll ' 2 | _user_temp = ground_temp + 273.15f; chain of TEMP parameter
Pitch *=7
Yaw 1 @] 315 temp = _user_temp

|

L@ |20 Taltitude = 153.8462f *temp * ... | Source code

<A list of states>

9 PURDUE Eﬂ@ @PurSec Lab

Reducing fuzzing

Mapping other types of inputs to each term ™

 How to map environmental factors and user commands to
each term from source code? Use an RV simulator!

2) Log changed
/> states
1) Change motors’ Simulator \ - Heading

speed - Throttle
P % Q 3) Change _ - Altitude

flight mode - Climb
<Changed states according

\ to motors’ speed>
Repeating 2) and 3) to identify changed
states under each flight mode

10 PUBDUE % @PurSecLab

Building distance

Two types of distances to mutate inputs metris (16

 Propositional distance
* Goal: efficiently mutating inputs
* Quantifies how close a proposition to the policy violation

If the term is numeric, we
use normalized difference.

-¢ {(Parachute=on)} A {(Mode, = FLIP/ACRO) V (ALT, > ALT,_,)}

Negative value:

Positive value:
If the proposition is true
If the proposition is false

1 If parachute = on 1 If mode = FLIP/ACRO ALT, - ALT,,
P, = ‘[PZ = { P3 =
-1 If mode # FLIP/ACRO ALT,

-1 If parachute = off

11 PUI,{DUE % @PurSecLab

Building distance

Two types of distances to mutate inputs metries (216

 Global distance
* Goal: detecting a policy violation

— Positive value if there is no policy violation

-1 X [Min{Py, Max(P,, P3)}] —

— Negative value if the RV violates the policy

12 PURDUE % @PurSecLab

Working example (time T = 1)

Building distance
metrics (3/6)

-|: 1 If parachute = on

Pl =
-1 If parachute = off
_|: 1 If mode = FLIP/ACRO
P, =
i -1 If mode # FLIP/ACRO

Time Parachute FLIP/ACRO
(T) (on/off) mode (T/F)
1 off false
2
4

ALT, - ALT,,
ALT,

Py =

Randomly select an

input and assign a

-1 X [Min{P;, Max(P,, P3)}] random value to the

selected input

Altitude P, P, P Global Next input for
(m) distance Time T+1
9 1 1 0 1 Motor speed =

1,800V

[E : RV’s current states at time T

E : Calculated distances at time T]

13 PURDUE Eﬁ@ @PurSecLab

1) (Motor speed > 1,500) - increasing RV’s altitude
(Motor speed < 1,500) = decreasing RV’s altitude

Building distance

Working example (time T = 2) metrics (46)

1 If parachute = on ALT, - ALT,, :
-1 If parachute = off ALT,
1 If mode = FLIP/ACRO 2) PGFUZZ selects an
P. = _[1) We log (motor, 1,800) input and assign a
2 - o
because the input random value to the
-1 If mode # FLIP/ACRO | =27 © 0 selected input
Time Parachute FLIP/ACRO Altitude P, P, P Global Next input for
(T) (on/off) mode (T/F) (m) distance Time T+1
Motor speed =
1 off false 90 -1 -1 0 1 1.8000
Motor speed =
2 off false 100 -1 -1 /01 1 1,800
3
3) When the selected input increased a
4 distance before, we reuse the input and
value pair (motor, 1,800)

. 1) (Motor speed > 1,500) - increasing RV’s altitude
14 PURDUE % @PurSec Lab (Motor speed < 1,500) - decreasing RV’s altitude
UNIVERSI Y

Building distance

Working example (time T = 3) metis (516)

1 If parachute = on ALT, - ALT,,
P, = -|: Py =
-1 If parachute = off ALT,
1 If mode = FLIP/ACRO
P, = -[-1 X [Min{P,, Max(P,, P3)}]
-1 If mode # FLIP/ACRO
Time Parachute FLIP/ACRO Altitude P, P, P Global Next input for
(T) (on/off) mode (T/F) (m) distance Time T+1
Motor speed =
1 off false 90 -1 -1 0 1 1.8000
Motor speed =
2 off false 100 -1 -1 0.1 1 1.800
3 off false 110 -1 -1 | 0.09 1 Parachute = on
4 /\

PGFUZZ selects an input

. v 1) (Motor speed > 1,500) - increasing RV’s altitude
15 PURDUE CE@ PurSecLab (Motor speed < 1,500) - decreasing RV’s altitude

Building distance

Working example (time T = 4) metris (66)

1 If parachute = on ALT, - ALT,,
P, = -|: Py =
-1 If parachute = off ALT,
1 If mode = FLIP/ACRO
P,= -[-1 X [Min{P,, Max(P,, P4)}]
-1 If mode # FLIP/ACRO
Time Parachute FLIP/ACRO Altitude P, P, P Global Next input for
(T) (on/off) mode (T/F) (m) distance Time T+1
Motor speed =
1 off false 90 -1 -1 0 1 1.8000
Motor speed =
2 off false 100 -1 -1 0.1 1 1.800
3 off false 110 -1 -1 | 0.09 1 Parachute = on
4 on false 112 1 -1 | 0.02 -0.02 Policy violation!

: N
Vehicle must not
increase jts altitude

. v 1) (Motor speed > 1,500) = increasing RV’s altitude
16 PURDUE CE@ PurSeclLab (Motor speed < 1,500) - decreasing RV’s altitude

Evaluation (1/3)

Evaluation

« RV control software
* ArduPilot, PX4, and Paparazzi

* 56 extracted policies
* Fuzzing 48 hours per each control software
* Violating 14 policies in the three-control software

* Found 156 bugs

17 PUI.{DUE \EE?® @PurSecLab

Evaluation (2/3)

Case study

* Policy
* “If time exceeds COM_POS _FS DELAY seconds after GPS loss
IS detected, the GPS fail-safe must be triggered”

User command
prompt

QGroundControl

g@ 9\9& ‘ A xg;_% o o ll! : 'E: ‘Armed'_ T_Orbit -7‘
S== ~- 5

1o PURDUE i

Evaluation (3/3)

Case study

== sp Measured flight path

« Fail to trigger the GPS fail-safe under —— Reference fight path
o COI\/I_POS_FS_DELAY = -1 [PX4 maintains the ORBITL
Eﬁ;

flight mode under GPS
signal loss.

m

pxh> param set SIM_GPS_BLOCK ©
+ SIM_GPS_BLOCK: curr: 1 -> new: 0
INFO [ecl/EKF] 9884000: GPS checks passed
[ecl/EKF] 14424000: reset position to GPS
[ecl/EKF] 14424000: reset velocity to GPS
[ecl/EKF] 14424000: starting GPS fusion
commander mode posctl
INFO [commander] Armed by external command
[commander] Takeoff detected

GPS S|gnals
are blocked

QGroundControl

@ ao \Q.& ‘ A &)00 o ol Ej E" !Ar‘nﬁed-‘ !_Orbit ‘i

Conclusion

* Novel fuzzing approach to find logic bugs

* Behavior-aware bug oracle
* Leverage policies (MTL formulas)

* Policy-guided mutation
* Propositional and global distances

* 156 previously unknown bugs
® 128 out of 156 found bugs can only be discovered by PGFUZZ.
® 106 bugs have been acknowledged
* 9 bugs have been patched

20 PUBDUE % @PurSecLab

Thank you! Questions?

KIm2956 @purdue.edu

77
PURDUE "‘ @

UNIVERSITY PurSeclLab

mailto:dxu@purdue.edu

Backup slides

22 PURDUE Eﬁ@ @PurSecLab

Safety bug |n real World Background

* Boeing-737 Max airplanes
* Crashed due to a design flaw
* Lowered its altitude based on only one broken sensor

How can we find such a critical bug in flight control software? Um... fuzzing?

The plane’s sensors took different readings

Angle of attack Incorrectly measured
sensor values

+60° Left sensor "™
Take off

+30° [\
o

Right sensor

-30° Sensors begin taking
conflicting readings
-60°
08:38 08:39 08:40 08:41 08:42 08:43

Time

Source: Ethiopian Aircraft Accident Investigation Bureau

https://www.dailymail.co.uk/news/article-7056177/US-investigators-believe-bird-strike-factor-
Ethiopian-Airlines-Boeing-737-Max-8-crash.html

23 ;P\U\BDUE m @PurSecLab

Threat model (1)

» Developers are benign
* Incorrectly design or make buggy code

« Users are also benign
* Unintentionally trigger the buggy code

24 PUBDUE % @PurSecLab

Threat model (2)

« Attackers control three types of inputs
* Further, they can wait until suitable conditions

 Attackers’ goal
* Stealthily triggering buggy code via sending
inputs that looks innocent

* The followings are out of scope
* Physical sensor attacks
* Malicious code injections

25 PUBDUE % @PurSecLab

Evaluation (1/3)

Evaluation

« RV control software
* ArduPilot, PX4, and Paparazzi

* 56 extracted policies
* Fuzzing 48 hours per each control software
* Violating 14 policies in the three-control software

* Found 156 bugs

Physical effect
Unstable Software Unexpected < For example, failing to }
attitude crash behavior trigger GPS fail-safe mode
45 90 21
Total: 156

26 PUBDUE % @PurSecLab

Outline

 Defining RV'’s correct behaviors as formulas

27 PURDUE 335 (@) pusects

