
PGFUZZ: Policy-Guided Fuzzing

for Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen,
Antonio Bianchi, Z. Berkay Celik, and Dongyan Xu

Purdue University

NDSS 2021

• Physical space
• Attitude, altitude, speed, etc.

• Cyber space
• Measuring the RV’s current states
• Adjusting actuators to reach target states

Workflow of robotic vehicles (RV)
Background (1/3)

- Current altitude: 20 m

- Target altitude: 10 m

Cyber space

Vehicle

Physical

space Sensor data

gathering



Commands

to actuators



Control

algorithm



Decreasing motors’

speed to lower altitude

User

commands

Environment

factors

For control

algorithm

Parameters

Three types

of inputs

2

• Rule:
• “Fail-safe mode must be triggered when the engine temperature

is higher than 100 C° (212 F°)”

Fuzzers for robotic vehicles (RV)
Background (2/3)

// Developers forget to convert F° to C° scale
If (temperature >= 100) {

Fail-Safe -> execute();
}

Fail-safe is triggered

under 100 F° (37 C°).

Can traditional fuzzers (AFL, libFuzzer)

discover such a design flaw? No

- Mutation: Code coverage

- Bug oracle: Memory access violation

3

• Can fuzzers specialized for RVs discover the design flaw?
• RVFUZZER, CPI, etc.

Fuzzers for robotic vehicles (RV)
Background (3/3)

4

// Developers forget to convert F° to C° scale
If (temperature >= 100) {

Fail-Safe -> execute();
}

Fail-safe is triggered

under 100 F° (37 C°).

What about fuzzers for RVs?

RVFUZZER: “Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing,” in USENIX, 2019.

CPI: “Cyber-physical inconsistency vulnerability identification for safety checks in robotic vehicles,” in CCS 2020.

No

- Mutation & Bug oracle: unstable attitude

• Previous works do not
• Know the RV’s correct behaviors
• Consider entire input space

• PGFUZZ

Overview of PGFUZZ

Creating

formulas

Defining correct

behaviors of RVs



Reducing

Fuzzing

space



Building

distance

metrics
- Behavior-aware bug oracle

- Policy-guided mutation



Mutating

inputs

Discover bugs



5

A vehicle must not deploy a parachute when the vehicle is:
1) In FLIP or ACRO flight modes
2) Climbing

Defining policies in formulas

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Never

or
time T time T-1

Defining RV’s

correct behaviors

The formula is created in the form of Metric temporal logic (MTL).

Documents

Extract policies

denoted by formulas

and

6

• Only mutating inputs relevant to the policy

Finding inputs for mutation
Reducing fuzzing

space (1/4)

• Huge fuzzing space
• 1,140 configuration parameters
• 58 user commands
• 168 environmental factors

7

• Policy consists of terms (physical states)
• Only mutating inputs related to the terms

• Decompose the formula into terms (states)

Finding inputs for mutation

Policy Related terms

Parachute Parachute Flight mode Altitude …

<Policy-term map>

Reducing fuzzing

space (2/4)

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Proposition

Term

8

• Static analysis to identify which states are affected by
each parameter

Mapping parameters to each term

configuration

parameter

①

②

③

Reducing fuzzing

space (3/4)

<A list of states>

Altitude

Roll

Pitch

Yaw

…

9

• How to map environmental factors and user commands to
each term from source code?

Mapping other types of inputs to each term

Simulator1) Change motors’

speed

2) Log changed

states

3) Change

flight mode

Repeating 2) and 3) to identify changed

states under each flight mode

Reducing fuzzing

space (4/4)

<Changed states according

to motors’ speed>

- Heading

- Throttle

- Altitude

- Climb

Use an RV simulator!

10

• Propositional distance
• Goal: efficiently mutating inputs
• Quantifies how close a proposition to the policy violation

Two types of distances to mutate inputs
Building distance

metrics (1/6)

¬ {(Parachute=on)} ˄ {(Modet = FLIP/ACRO) ˅ (ALTt > ALTt−1)}

Positive value:

If the proposition is true

Negative value:

If the proposition is false

If the term is numeric, we

use normalized difference.

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO
P3 =

ALTt - ALTt-1

ALTt

11

• Global distance
• Goal: detecting a policy violation

Two types of distances to mutate inputs
Building distance

metrics (2/6)

Positive value if there is no policy violation

Negative value if the RV violates the policy

-1 X [Min{P1, Max(P2, P3)}]

12

Working example (time T = 1)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1

2

3

4

: RV’s current states at time T : Calculated distances at time T

Randomly select an

input and assign a

random value to the

selected input

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (3/6)

Motor speed =

1,8001)

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

13

Working example (time T = 2)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1

3

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (4/6)

1) We log (motor, 1,800)
because the input

increases P3.

2) PGFUZZ selects an

input and assign a

random value to the

selected input

3) When the selected input increased a

distance before, we reuse the input and

value pair (motor, 1,800)

Motor speed =

1,8001)

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

14

Working example (time T = 3)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed =

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (5/6)

PGFUZZ selects an input

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

15

Working example (time T = 4)

Time

(T)

Parachute

(on/off)

FLIP/ACRO

mode (T/F)

Altitude

(m)

P1 P2 P3 Global

distance

Next input for

Time T+1

1 off false 90 -1 -1 0 1
Motor speed =

1,8001)

2 off false 100 -1 -1 0.1 1
Motor speed =

1,800

3 off false 110 -1 -1 0.09 1 Parachute = on

4 on false 112 1 -1 0.02 -0.02

1) (Motor speed > 1,500) → increasing RV’s altitude

(Motor speed < 1,500) → decreasing RV’s altitude

Building distance

metrics (6/6)

Policy violation!

Vehicle must not

increase its altitude

P1 =

1 If parachute = on

-1 If parachute = off

P2 =
1 If mode = FLIP/ACRO

-1 If mode ≠ FLIP/ACRO

P3 =
ALTt - ALTt-1

ALTt

-1 X [Min{P1, Max(P2, P3)}]

16

• RV control software
• ArduPilot, PX4, and Paparazzi

Evaluation
Evaluation (1/3)

• 56 extracted policies
• Fuzzing 48 hours per each control software
• Violating 14 policies in the three-control software

• Found 156 bugs

17

• Policy
• “If time exceeds COM_POS_FS_DELAY seconds after GPS loss

is detected, the GPS fail-safe must be triggered”

Case study
Evaluation (2/3)

18

• Fail to trigger the GPS fail-safe under
• COM_POS_FS_DELAY = -1

Case study

PX4 maintains the ORBIT

flight mode under GPS

signal loss.

Evaluation (3/3)

19

• Novel fuzzing approach to find logic bugs
• Behavior-aware bug oracle

• Leverage policies (MTL formulas)

• Policy-guided mutation
• Propositional and global distances

• 156 previously unknown bugs
• 128 out of 156 found bugs can only be discovered by PGFUZZ.
• 106 bugs have been acknowledged
• 9 bugs have been patched

Conclusion

20

Thank you! Questions?

kim2956@purdue.edu

mailto:dxu@purdue.edu

Backup slides

22

• Boeing-737 Max airplanes
• Crashed due to a design flaw
• Lowered its altitude based on only one broken sensor

Safety bug in real world

https://www.dailymail.co.uk/news/article-7056177/US-investigators-believe-bird-strike-factor-

Ethiopian-Airlines-Boeing-737-Max-8-crash.html

Incorrectly measured

sensor values

How can we find such a critical bug in flight control software? Um… fuzzing?

Background

23

• Developers are benign
• Incorrectly design or make buggy code

Threat model (1)

24

• Users are also benign
• Unintentionally trigger the buggy code

• Attackers control three types of inputs
• Further, they can wait until suitable conditions

Threat model (2)

25

• Attackers’ goal
• Stealthily triggering buggy code via sending

inputs that looks innocent

• The followings are out of scope
• Physical sensor attacks
• Malicious code injections

• RV control software
• ArduPilot, PX4, and Paparazzi

Evaluation
Evaluation (1/3)

• 56 extracted policies
• Fuzzing 48 hours per each control software
• Violating 14 policies in the three-control software

• Found 156 bugs

Physical effect

Unstable

attitude

Software

crash

Unexpected

behavior

45 90 21

Total: 156

For example, failing to

trigger GPS fail-safe mode

26

• Defining RV’s correct behaviors as formulas

• Reducing fuzzing space

• Building distance metrics

• Evaluation

Outline

27

