
This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

Automated Discovery of Semantic Attacks
in Multi-Robot Navigation Systems
Doguhan Yeke and Kartik A. Pant, Purdue University;

Muslum Ozgur Ozmen, Arizona State University;
Hyungsub Kim, Indiana University Bloomington;

James M. Goppert, Inseok Hwang, Antonio Bianchi,
and Z. Berkay Celik, Purdue University

https://www.usenix.org/conference/usenixsecurity25/presentation/yeke

Automated Discovery of Semantic Attacks in Multi-Robot Navigation Systems

Doguhan Yeke†, Kartik A. Pant†, Muslum Ozgur Ozmen‡, Hyungsub Kim§

James M. Goppert†, Inseok Hwang†, Antonio Bianchi†, and Z. Berkay Celik†

† Purdue University, {dyeke, kpant, jgoppert, ihwang, antoniob, zcelik}@purdue.edu
‡ Arizona State University, moozmen@asu.edu § Indiana University Bloomington, hk145@iu.edu

Abstract
Finding collision-free paths is crucial for autonomous multi-
robots (AMRs) to complete assigned missions, ranging from
search operations to military tasks. To achieve this, AMRs
rely on collaborative collision avoidance algorithms. Unfortu-
nately, the robustness of these algorithms against false data
injection attacks (FDIAs) remains unexplored. In this paper,
we introduce Raven, a tool to identify effective and stealthy se-
mantic attacks (e.g., herding). Effective attacks minimize posi-
tional displacement and the number of false data injections by
using temporal logic and stochastic optimization techniques.
Stealthy attacks remain within sensor noise ranges and main-
tain spatiotemporal consistency. We evaluate Raven against
two state-of-the-art collision avoidance algorithms, ORCA
and GLAS. Our results show that a single false data injection
impacts multi-robot systems by causing position deviation or
even collisions. We evaluate Raven on three testbeds–a numer-
ical simulator, a high-fidelity simulator, and Crazyflie drones.
Our results reveal five design flaws in these algorithms and un-
derscore the importance of developing robust defenses against
FDIAs. Finally, we propose countermeasures to mitigate the
attacks we have uncovered.

1 Introduction

Autonomous multi-robots (AMRs) consist of robots working
cooperatively to complete tasks that would be difficult or
impossible for a single robot. The use of multiple robots has
become widespread in surveillance and industrial domains [5,
29, 46, 70]. While Amazon plans to conduct robot deliveries
with the Amazon Prime Air service [6, 56], another notable
real-world application is the tactical use of drone swarms in
security operations [25]. Moreover, the concept of the Internet
of Drones (IoD) [2] introduces a framework in which drones
from different entities share and operate within the same
environment in a coordinated and connected manner [30].
This paradigm enables easy integration of multiple drones,
facilitating cooperative task execution [10].

A particularly concerning vulnerability of robotic systems
is false data injection attacks (FDIAs), in which adversaries
manipulate sensor readings or communication data to disrupt
AMR operation. We focus on FDIAs because AMRs depend
heavily on accurate communication data for safe navigation.
When these data are compromised, attackers can cause signif-
icant disruptions that undermine both the safety and mission
objectives. The attack vectors of FDIAs take many forms. For
example, since March 16, 2024, drones in US airspace must
comply with Remote ID regulations [61]. These regulations
require drones to transmit their identity, position, and veloc-
ity. This information is crucial for safe navigation of both
drones and other aircraft. However, Remote ID lacks both
authentication and encryption, making it vulnerable to FDIAs.
Similarly to Remote ID, adversaries can inject false data into
multi-robot systems through ADS-B messages [17], physical
sensor spoofing [33, 79], and insiders in IoD [8, 22].

The FDIAs mainly impact the behavior of the multi-
robot collision avoidance (MRCA) algorithms of AMRs.
These algorithms rely on sensor measurements for self-
localization and broadcast messages to track surrounding
robots [63, 72, 80]. Attackers can inject false data into these
messages, disrupting the system’s ability to ensure safe nav-
igation. Such exploitation poses a critical risk to safety and
functionality of multi-robot systems by causing potential phys-
ical damage (e.g., collisions with other robots or buildings).

Existing studies on robotic vehicle security can be broadly
grouped into two categories: (a) single-robot systems and
(b) multi-robot systems. A line of work [41–43] investigates
single-robot systems. These studies focus on a single robot
and do not address vulnerabilities in multi-robot navigation.

Another line of research [14, 73] explores autonomous ve-
hicle (AV) and vehicle platooning [1, 18] vulnerabilities. Al-
though related, the AVs domain differs from mobile robots
due to different objectives, such as lane keeping, and different
control systems with different degrees of freedom. Similarly,
the vehicle platooning domain differs from mobile robots
with its operation as a single unit along fixed lanes and in a
rigid formation, and its leader-follower architecture.

USENIX Association 34th USENIX Security Symposium 3959

Two recent studies have investigated the security of multi-
robot systems, focusing on vulnerabilities in swarm-based
navigation. SwarmFlawFinder (SFF) [34] uses an external
drone to identify logic bugs in swarm control algorithms
through fuzzing based on a counterfactual mutation strategy.
SwarmFuzz (SF) [87] is a fuzzing technique that targets GPS
spoofing attacks to cause collisions between a victim robot
and a static obstacle.

While these works provide valuable insights and method-
ologies, our preliminary study (See Section 4) revealed lim-
itations that make them less practical to extend for FDIAs
against MRCA algorithms. To summarize, first, both works
do not fully consider the complex dynamics of multi-robot
interactions. That is, SFF’s causality-based mutation strategy
neglects the indirect interactions among multiple robots, while
SF focuses solely on two-robot scenarios. This simplification
overlooks the ripple effect phenomenon [90], which refers to
how the actions of one robot can change the behavior of others
in AMRs. A ripple effect is important as an attack on a single
robot can trigger cascading failures and unexpected behaviors
throughout the entire swarm (detailed in Section 4). Second,
they consider limited attack spaces crucial for evaluating the
MRCA algorithms. SFF’s fuzzer relies on a restricted set of
four actions (i.e., push back, follow, fragmentation, direction
change), while SF constrains its analysis on only horizontal
sensor spoofing. Consequently, they cannot be extended to
adequately explore the full spectrum of potential attack pa-
rameters, including optimal sensor values, injection time, and
duration. Adapting these studies to explore vulnerabilities in
MRCA algorithms is challenging, as their attack strategies
are tightly coupled with specific actions.

To address these gaps, we introduce Raven, a framework to
find semantic attacks in multi-robots. We define a semantic
attack as a form of adversarial manipulation that exploits the
robot’s interpretation of its environment, causing it to deviate
from its intended task. To this end, we define five different se-
mantic attack goals. We identify three of them from prior work
(navigation delay, robot-robot collision, and robot-obstacle
collision), and we newly discover two other goals (deadlock
and herding). Achieving these goals is challenging due to
high-dimensional input spaces and the need for the adversary
to remain stealthy by evading the detectors deployed. For an
attack to remain stealthy, the adversary must craft perturba-
tions that are both minimal and contextually plausible. To
address this, we first formally represent attacks using tempo-
ral logic formulas. We define spatio-temporal and stealthiness
constraints that keep attack parameters within a distribution
to evade existing detectors. To effectively find stealthy attack
parameters, we employ a robustness-guided search method
combined with a stochastic optimization technique.

We evaluate Raven with two state-of-the-art MRCA algo-
rithms (ORCA [80] and GLAS [63]) on three testbeds: an
interactive Python simulator, a PX4 and Gazebo-based sim-
ulator, and a swarm of Crazyflie drones. Our results show

that even a single false data injection can significantly impact
multi-robot systems, causing collisions and enabling shep-
herding (i.e., large lateral deviations) attacks. Raven achieves
a high success rate of 90% to 100% with attacks that include
only five injections. We conducted experiments with various
attack parameters and realized them in realistic physics-based
simulations and real-world experiments to demonstrate the
feasibility of performing the FDIAs in practice. Finally, we
analyze the vulnerabilities and categorize them into five dif-
ferent root causes (e.g., high reactivity and planning-time
trade-off). In summary, we make the following contributions:

• We introduce two new adversarial objectives targeting
multi-robot systems that disrupt their intended naviga-
tion: “deadlock”, which immobilizes robots by maintain-
ing their positions for a certain duration, and “herding”,
which directs robots into attacker-specified areas.

• We introduce Raven, a tool that leverages signal tem-
poral logic to formally express our two new adversar-
ial objectives and three existing goals from prior work,
and systematically identifies optimal false data injection
attack parameters that achieve these goals in MRCA
algorithms.

• We evaluate Raven by targeting two state-of-the-art
MRCA algorithms, ORCA and GLAS, within different
testbeds in diverse environmental configurations, and
assess its feasibility in real-world scenarios. Our anal-
ysis reveals five distinct design flaws that make them
vulnerable to attacks.

We have responsibly disclosed our findings to the devel-
opers of ORCA and GLAS and shared our report with ten
stakeholders, including multi-robot companies and agencies.
Our project is available for public use and validation [88].

2 Background

Robot Software Stack. In this paper, we focus on aerial
robotic vehicles, although we anticipate that the methodolo-
gies we introduce can be extended to ground and aquatic sys-
tems (detailed in Section 7). An aerial robotic software stack
consists of four main components [72]: sensing, mapping and
localization, planning, and control, as shown in Figure 1.

The sensing component enables the robot to sense its physi-
cal environment with RGB images from cameras and 3D point
clouds from vision sensors (e.g., LiDARs and depth cameras).
The mapping & localization component estimates the robot’s
physical state (e.g., position) using sensor measurements, in-
cluding global navigation satellite systems (GNSS) and the
inertial measurement units (IMUs). Raw sensor measurements
from non-vision sensors are next passed to sensor filters such
as low-pass [45] (e.g., configured with IMU_GYRO_CUTOFF in
PX4 [58]) and dynamic harmonic notch filters [32]. Filtered

3960 34th USENIX Security Symposium USENIX Association

Mapping &

Figure 1: A robot software stack.

sensor readings are then passed to sensor fusion algorithms,
such as extended Kalman filters [36] (EKFs), to estimate the
physical states of a robot (e.g., position). The planning com-
ponent then sets the robot’s target physical states (e.g., the
desired position). Lastly, the control component calculates
the proper commands for the actuators (i.e., motors) to make
the robot achieve the desired physical states.

Multi-Robot Coordination. Multi-robots achieve state
awareness (position and velocity) of other robots through two
primary methods: (i) vision sensor-based estimation and (ii)
communication-based state sharing. In vision sensor-based
estimation, robots rely on on-board sensors (e.g., LiDAR and
camera) to perceive the states of other robots. However, this
method faces several problems: (1) many vision sensor com-
ponents employ machine learning algorithms (e.g., computer
vision-based techniques) that lack formal proofs of correct-
ness, and (2) vision sensors may return erroneous readings
due to various reasons, from malfunctions to environmental
conditions. These problems may cause sensor-based estima-
tion to determine other robots’ states incorrectly.

To address these concerns, communication-based state shar-
ing that relies on data exchange between robots is broadly
used. Each robot estimates its position and velocity through
its sensors (such as GNSS and accelerometers) and shares
its state with other robots using communication protocols.
This method has several advantages: (1) it provides precise
information about the location of all robots (up to the accu-
racy of the ego robot’s state estimation), (2) robots do not
need to depend on potentially error-prone sensing modules
to estimate other robots’ positions and velocities, and (3) this
approach ensures that each robot maintains a consistent view
of other robots’ states in multi-robot systems.

Robots use different protocols to share their states. In par-
ticular, Micro Air Vehicle Link (MAVLink) [48], originally
developed for open-source autopilots such as ArduPilot [7]
and PX4 [58], is widely adopted by uncrewed aerial vehicles
in academic and research environments due to its lightweight,
packet-based messaging framework. Larger robots, such as
aircraft, broadcast their states through Automatic Dependent
Surveillance-Broadcast (ADS-B) [9].

Smaller uncrewed aircraft vehicles (UAVs), such as drones,
use remote identification (Remote ID) [61]. Starting March

16, 2024, the Federal Aviation Administration (FAA) [27] re-
quires that all drones broadcast their identity and position [62].
Although both ADS-B and Remote ID help maintain situa-
tional awareness, they are neither encrypted nor authenticated.
As a result, robots send their state messages (i.e., {robot_id,
position, ...}) in plaintext. These state messages are in-
puts to the collision avoidance algorithms.
Multi-Robot Collision Avoidance (MRCA). Collision-
avoidance modules focus on immediate responses to dynamic
environmental factors. These modules ensure the safety of
robots by planning actions over a short time frame to avoid
collisions. MRCA algorithms can be categorized into two
types: centralized and decentralized [71].

Centralized MRCA algorithms rely on a ground control
station (GCS) that collects information from all robots, such
as their physical states (e.g., position), and computes trajec-
tories for each robot. These algorithms require substantial
computational power and are generally infeasible for resource-
constrained systems, such as mobile robots with limited RAM
and flash memory [72]. Therefore, these algorithms must be
executed on GCS, with robots periodically updated about their
next waypoint. As a result, centralized algorithms require con-
stant communication between robots and the GCS, which is
impractical over large areas or extended periods. In addition,
this approach is vulnerable to a single point of failure.

In decentralized MRCA algorithms, each robot computes
its trajectory using partial environment information. Thus,
robots have limited knowledge of the environment and mainly
rely on their sensors (e.g., GNSS) for their state estimation
(e.g., position) and wireless communication protocols such as
ZigBee, Bluetooth, and Wi-Fi [35] to obtain states from other
robots in their vicinity. Decentralized algorithms guarantee
fast computation and can be deployed onboard for real-time
execution, making them suitable for resource-constrained sys-
tems due to size, weight, and power limitations.

Notable examples of collision-avoidance algorithms in-
clude optimal reciprocal collision avoidance (ORCA) [80],
control barrier functions (CBFs) [82], pathfinding via rein-
forcement and imitation multi-agent learning (PRIMAL) [67],
and global-to-local autonomy synthesis (GLAS) [63]. Devel-
opers and researchers commonly adopt and/or extend these
algorithms for real-world applications such as car-like robots
and ground mobile robots [4, 15]. We detail our selection
criteria for ORCA and GLAS algorithms in Section 6.

3 Threat Model

We denote three robot roles: the target robot, whose posi-
tion readings or messages are manipulated by the adversary;
the victim robot, which the adversary seeks to attack; and
bystander robots, which are all other robots in the system.

We consider two types of semantic attacks, shepherding and
collision attacks. The shepherding attacks aim to (i) steer the

USENIX Association 34th USENIX Security Symposium 3961

victim towards an attacker-desired area or (ii) immobilize the
robot for a certain duration, causing it to fail/delay its mission
(e.g., time-sensitive deliveries). The goal of collision attacks
is to cause collisions between robots or with obstacles while
the target robot is not involved in the collision. Direct attacks
(e.g., spoofing the victim robot’s GNSS readings directly and
making it collide with an obstacle) are outside the paper’s
scope, as prior studies examined such scenarios [23, 68].
Adversary’s Capabilities. We consider an adversary who
conducts FDIAs on fully autonomous multi-robots. The ad-
versary executes FDIAs by manipulating the target robot,
thereby aiming to affect the victim robot.

Figure 2 provides three concrete scenarios that depict three
representative FDIAs: (1) insider/intruder (left), (2) Remote
ID or ADS-B spoofing attacks (center), and (3) physical sen-
sor attacks such as GNSS or IMU spoofing (right).

First, insider attacks can occur due to malicious robot(s)
within the system, such as in Internet of Drones (IoD) [2, 30],
which are gaining popularity as they allow a vast number of
UAVs to share the same airspace and to collaborate on com-
plex missions such as search and rescue operations [59, 64].
However, these heterogeneous systems allow adversaries to
introduce a malicious robot that can transmit fake position
and velocity to other robots in the swarm [8, 22]. Figure 2
(Left) demonstrates the insider/intruder attack vector, where
an adversary controls a robot (acting as the target) to directly
inject false position ({pa}) into the multi-robot communica-
tion network, thereby manipulating the information used by
the victim robot for collision avoidance.

Second, UAVs broadcast Remote ID [61] or ADS-B [9]
messages, which is mandated by FAA [27]. Yet, these mes-
sages are neither authenticated nor encrypted [17, 74]. Thus,
the attacker can spoof these messages that include their identi-
fication, position, and velocity while operating in the airspace.
Figure 2 (Middle) shows Remote ID or ADS-B spoofing,
where the attacker broadcasts spoofed messages ({pa}) con-
taining fabricated position data of the target robot, which are
then received and processed by the victim robot.

Third, an attacker can conduct a physical sensor attack (e.g.,
spoofing GNSS signals) to make the target robot obtain the
spoofed location and report the false position to other robots,
including the victim robots [23,68,79]. Furthermore, targeted
GNSS spoofing, which uses directional antennas to target a
single GNSS receiver among multiple receivers, has shown
a significant impact both theoretically [79] and experimen-
tally [33] in multi-robots. Figure 2 (Right) shows that the
adversary conducts sensor spoofing by generating fake GNSS
signals that deceive the target robot’s sensors, causing the tar-
get robot to calculate and report an incorrect position ({pa})
to all robots, including the victim robot.
Adversary’s Knowledge. We assume that the adversary
knows MRCA algorithm running on robots, as well as their
initial and target positions. We assume that robots do not have
visual sensors (e.g., cameras) to cross-validate the integrity of

{ pa }

{ pa }

Insider / Intruder Remote-ID or ADS-B Spoofing Physical Sensor Spoofing

{ pa }
{ pa }

{ pa }

Ground

Airborne{ pa }

SDR SDR

Figure 2: Attack vectors of FDIAs. (Left) Insiders or intruders
directly inject false data into the network. (Middle) Attack-
ers spoof Remote ID or ADS-B signals through (1) targeting
line-of-sight drones equipped with receivers or (2) spoofing
ground stations that relay messages to aircraft. (Right) At-
tackers manipulate physical sensors to generate false readings
propagating through the network.

incoming messages, similar to previous work [86, 87]. This
assumption aligns with real-world deployments—our analy-
sis of 32,190 PX4 flight logs shows only 0.8% of UAVs use
vision sensors, likely due to battery constraints [12].

4 Motivation and Challenges

4.1 Motivating Example

We show an example of a shepherding attack on AMRs that
causes navigation delay in a search and rescue operation.
Benign Case. Figure 3 (Left) demonstrates the benign case in
which three robots navigate to their respective goal positions
while avoiding collisions. The robots first pass near a block of
houses (obstacle 1). They next have to pass a tree (obstacle 2)
by avoiding any collisions. Since robots are fully autonomous,
they dynamically decide their target waypoints (i.e., each dot)
at each time step rather than using static waypoints. To de-
cide these dynamic waypoints, each robot follows three steps:
(1) Each robot calculates its estimated position and velocity
through its sensor measurements (e.g., GNSS, accelerome-
ter). (2) Each robot sends its position and velocity to all other
robots. (3) The algorithm deployed decides the robot’s veloc-
ity and the target waypoint for the next time step.
Navigation Delay Attack. Figure 3 (Middle) demonstrates
the adversarial case in which the attacker aims to cause a nav-
igation delay for the victim robot (shown as 0⃝). To achieve
this, the attacker performs a Remote ID spoofing attack at time
step t on the target robot (shown as 1⃝). When the attacker
spoofs the target robot’s Remote ID broadcast at time t (i.e.,
ta), the victim robot receives inaccurate position data about
the target robot (xa=x3, ya=y2). Based on the spoofed position
broadcast, the victim robot (0⃝) calculates its target waypoint
and velocity for the next time step at time t+1 (Right). The
spoofed Remote ID broadcast creates a deviation of x =−1.2
and y = 1.9 in the victim robot’s route, steering it to the left
side of obstacle 1 (red dotted line). The victim robot has two

3962 34th USENIX Security Symposium USENIX Association

Static
Obstacles

Initial
Positions

waypoints

Goal
Positions

Obstacle 1

Obstacle 2

+

0
1

Actual
velocity

False
Position

θ

y1

y2

y3

x1 x2 x3

time = t

time = t+1Static
Obstacles

Initial
Positions

waypoints

Goal
Positions

Obstacle 1

Obstacle 2

0

force

x x

0
1

2
0

1
2

Figure 3: Illustration of a navigation delay attack in an autonomous multi-robot Search and Rescue (SAR) scenario. (Left) Under
benign conditions, both robots (R0, the “victim”, and R1, the “target”) follow optimal trajectories toward their goal positions.
(Middle) The compromised (target) robot R1 maneuvers so that R0 is forced into the left side of an obstacle (shown as a red X).
(Right) Specifically, this is achieved by causing R1’s position in front of R0 (shown by waypoints x3, y2), causing R0 to deviate
from its original path. As a result, R0 detours around the obstacle via a longer, suboptimal route in timely SAR operations.

options: wait for the target robot to clear its optimal path or
take a longer alternative route. Unlike autonomous vehicles,
these robots rely on local planners and occasional support
from a ground control station. Consequently, the victim robot
takes the longer path, more than doubling its navigation time.

Figure 3 (Right) demonstrates that the adversary must plan
three important attack parameters: when to attack (ta), how to
attack (xa, ya), and how many times to inject false data (na).
For ta, the adversary specifically conducts the attack at the
strategic time when the robots are passing close to obstacle 1.
For xa and ya, the adversary calculates the displacement re-
quired to steer the victim drone to the left side of the obstacle.
To remain stealthy (detailed in Section 7), the position errors
should be within a specified range (e.g., 5m [31]) to avoid
being filtered out by the target robot’s deployed detector. For
na, the adversary spoofs the target robot once, avoiding un-
necessary spoofing (detailed in Section 7). It is challenging to
systematically find these optimized attack parameters. Unfor-
tunately, the prior work on multi-robot attacks [34,87] cannot
identify these attack parameters. This is because they limit
their search space to a limited set of parameters, whereas
identifying this attack’s parameters requires searching for
continuous values, which they do not support.

4.2 Design Challenges

C1: High-Dimensional Attack Parameter Search. Finding
optimal attack parameters requires exploring a vast multi-
dimensional space. This space includes when to launch the
attack, how long to maintain it, and how to manipulate both
the x and y displacements when crafting false data. Prior work
restricts the search to four predefined maneuvers or to hori-
zontal spoofing, which limits the search space and reduces
the attack success rate [34, 87]. Prior research also focuses
on a single target-victim robot pair, which overlooks indi-

rect ripple effects [87], which refers to how the actions of
one robot can alter the behavior of others in a multi-robot
system. For example, as shown in Figure 3, an injection at-
tack on Robot 2 can affect Robot 1, which in turn impacts
Robot 0. Consequently, small position changes in one robot
can alter the next waypoint calculations of other robots. This
complexity grows with the number of robots, intensifying the
challenge of finding accurate attack parameters.

C2: Attack Generalization. Prior work focuses on a single
scenario with only one attacker’s goal (i.e., a robot-obstacle
collision) in an environment [87]. However, integrating their
approaches into other attacker goals is not feasible for two
main reasons. First, their optimization function is only tai-
lored to a distance metric that cannot be easily extended to
shepherding attacks. Second, their gradient-guided optimiza-
tion assumes a convex objective function that minimizes the
distance between a victim robot and an obstacle. However,
this assumption fails, as attacks in multi-robot systems of-
ten include non-convex objectives as detailed in Section 5.
In addition, their approaches are not extendable to multiple
victims, multiple attackers, or environments with multiple ob-
stacles, due to their linear optimization function to calculate
the distance between a robot and an obstacle. However, this
severely constrains the search space for the attacker.

C3: Attack Detection. Previous work applies constant spoof-
ing with a fixed displacement or requires physical proximity
to an external drone, both of which can be easily flagged
by deployed detectors [34, 87]. Instead of constant spoofing,
perturbations should be crafted to be small to minimize the
likelihood of detection. Thus, the attacker must find minimal
perturbations to achieve the attack goal. These injections must
also remain spatio-temporally consistent. For example, the at-
tacker should remain within the velocity constraints of MRCA
algorithm (e.g., ORCA [80]) to avoid apparent anomalies.

USENIX Association 34th USENIX Security Symposium 3963

Herding Attack

Attacker Goals Attack Discovery Simulation

Robot-Robot Collision

Navigation Delay Attack

Robot-Obstacle Collision

Deadlock Attack

When to attack?

How to attack?

How many times to
attack?

How long to
attack?

MRCA Algorithm Profiling

Adversarial Input Generation

 Attack Formalization

Attack Parameter Search

Shepherding Attacks

Collision-based Attacks

Attack
Parameters

1. Attack Demonstration

2. Design Flaws

min_dist_robots > 2 x radius

(x1, y1).

Figure 4: Overview of Raven’s architecture.

C4: Real-World Impact. Prior studies often rely on
MATLAB/R-based simulators [34, 76, 87]. However, these
simulators lack full integration of autopilot systems (e.g.,
PX4 [58]), MRCA algorithms, and real-time multi-robot com-
munication. This impacts the effectiveness of attacks in prac-
tice. To demonstrate practicality, attacks should be evaluated
on Software-in-the-Loop (SITL) simulation with Autopilot
programs (e.g., PX4 [58] and Ardupilot [7]). However, cur-
rent simulators do not fully support collective multi-robot
navigation. This is challenging as it requires distributed coor-
dination (i.e., separate Autopilot deployment for each robot)
and real-time multi-robot communication.

5 RAVEN Design

We present Raven, a tool that integrates a search-based method
with a stochastic optimization function to identify feasible
attacks on MRCA algorithms.
Approach Overview. Figure 4 illustrates the architecture of
Raven, which operates in four phases: (1) defining attacker
goals and formally specifying them for vulnerability analysis
of the MRCA algorithms, (2) profiling the MRCA algorithms
for attack synthesis, (3) generating adversarial inputs under
physical constraints, and (4) conducting a robustness-guided
search to determine feasible attack parameters.

We first formally represent the attacker’s goals using Signal
Temporal Logic (STL) formulas (1). We next integrate the
attack parameters directly into the predicates of the STL for-
mulas, making Raven adaptable to varying conditions, such
as selecting different victim and/or target robots (C1, C2).

We conduct an initial run without any attack to observe the
robots’ trajectories in a benign scenario (2). This step offers
two main insights to Raven. First, it allows us to create a pool
of potential target-victim robots. Particularly, we record the
timestamps when the robots pass near obstacles. This infor-
mation helps narrow the search space for the time parameter,
making the attack design more efficient (C1). Second, it pro-

vides the total simulation time of the mission, which is used
to sample the time parameter within this range.

We enhance attack stealthiness by addressing spatio-
temporal constraints and adhering to GNSS tolerance thresh-
olds to evade commonly used detectors (3). We generate
false messages within physical constraints to reflect realis-
tic position changes and remain within GNSS noise thresh-
olds (C3). Additionally, we implement an intermittent attack
strategy by sampling attack times from the total simulation
duration to reduce the likelihood of detection by commonly
deployed detectors (detailed in Section 5.3).

We model each MRCA algorithm as a black-box compo-
nent and incorporate it into Raven (4). A cost function is
defined for each attack type, and the stochastic optimization
function iteratively generates attack parameters to identify
those required for successful false data injections (C2). The
stochastic optimization function is critical for STL, as STL
has non-linear and non-convex properties.

5.1 Attack Goal Formalization

Table 1 outlines the formalization of each attack. The column
“Attack Type” lists the attack’s name. The column “Expla-
nation” provides a description of the attack. The column
“STL Formula” formally represents each attack using a Signal
Temporal Logic (STL) formula. We choose STL over other
temporal logics for two reasons. First, multi-robot systems
have continuous state variables, such as positions and veloci-
ties. Second, STL allows for precise timing constraints, such
as “the robot should stay in this region for 10 seconds.”
Herding. We define dist of victim to point as the dis-
tance of the victim robot to a specific location chosen by the
attacker. The formula states that the distance from the victim
to the attacker-desired location must always be greater than x.
Deadlock. We define total pos diff of victim as the
position displacement of the robot given a certain time period.
The formula states that within the mission time, the total

3964 34th USENIX Security Symposium USENIX Association

Table 1: Description of STL specifications for attacks on MRCA algorithms.

ID Attack Type Explanation STL Formula
Shepherding Attacks

A1 Herding The target robot causes the victim robot to navigate
into the attacker-desired area (gets closer by x).

□(dist_of_victim_to_point > x)

A2 Deadlock The target robot causes the victim robot to be stuck
in a position (no position change more than a thresh-
old (x) for a certain time (t)).

□[t,mis_time] (total_pos_diff_of_victim > x)

A3 Navigation Delay The target robot causes the victim robot to navigate
an extended distance and increase navigation time
(d times) without causing deadlock.

♢[0,mis_time×d] (victim_pos = goal_pos)∧□[t,mis_time] (total_pos_diff_of_victim > x)

Collision Attacks
A4 Robot-Robot Collision The target robot causes the victim robot to collide

with another robot in the multi-robot system.
□(min_dist_victim_robot > 2× robot_radius)

A5 Robot-Obstacle Collision The target robot causes the victim robot to collide
with a static obstacle in the environment.

□(min_dist_victim_obst > robot_radius)

† □ refers to “always”, ♢ refers to “eventually”.

position change of the victim robot in every time window
t must always be greater than x. We illustrate the deadlock
attack in Figure 12 in Appendix A.

Navigation Delay. The formula means that the victim robot
"eventually" reaches the goal position over an extended time
period. Here, we define d based on the prior work [34]. The
formula states that within the extended mission time, the total
position change of the victim robot must always be greater
than x, and the victim robot must always be in the target
position at the end of the mission.

Robot-Robot Collisions. We define min dist victim

robot as the minimum distance between the victim robot
and other robots, and radius is the radius of the robot. The
formula states that the minimum distance between the victim
robot and another robot must always be greater than twice the
radius. In our framework, we exclude the target robot from
direct collision scenarios with the victim robot for subsequent
attacks. We motivate this approach with two main reasons:
(1) minimizing liability and (2) preserving the target robot for
future attacks during the mission, as detailed in Section 7.

Robot-Obstacle Collisions. We define min dist victim

obst as the minimum distance between the victim robot and
its closest obstacle. The formula states that this distance must
always be greater than the robot’s radius.

5.2 MRCA Algorithm Profiling

Algorithm 1 presents the Raven’s steps, with each component
represented by a corresponding function. Raven begins with
MRCA algorithm profiling.

To craft attack messages, Raven requires attack ranges for
each parameter, as the search space is significantly large. To
determine these ranges, we run the MRCA algorithm without
injecting any attacks to observe the total navigation time. We
then sample the time parameter from this range [0, tsim].

Here, we model MRCA as a system under test (SuT) that
outputs time-series data (Line 4). Specifically, the model takes
start and goal positions of the robots as input, and outputs

system trajectories as follows:

M : (S,G → Rn)→ (W → Rs) (1)

where S and G represent start and goal positions, W denotes
robot waypoints, n is the number of robots, and s is the simu-
lation duration divided by timestep ∆t.

Next, we identify the target and victim robots. We calcu-
late robot-obstacle distances for each robot-obstacle pair (e.g.,
[O1: [R2:1.2m, R3:1.4m,]]). We then populate it with po-
tential target-victim pairs. Specifically, robots passing closest
to obstacles are prioritized as victims, and the robot closest to
victim is selected as target. This approach reduces the time
complexity of searching for victim-target pairs in the system.

In addition, we record timestamps when robots pass near
obstacles. This information can further narrow the search
space for the time parameter for attacks (e.g., collision), mak-
ing the attack design more efficient. It is important to note
that no attack is conducted during this run; the attacker’s goal
is to collect data to craft effective attacks in this environment.

5.3 Adversarial Input Generation
When generating parameters, we set two constraints to en-
hance attack feasibility and reduce the likelihood of detection.
Spatio-temporal Consistency. The spatio-temporal consis-
tency enables the attacks to be physically viable and plausible.
For example, if an attacker creates a sudden jump in the GNSS
coordinates of the system, it can be trivially flagged by a run-
time monitor, which checks the consistency of the GNSS
measurements over time. In this work, the attack parameters
are designed based on the feasibility of the false message.
During the crafting of the attack message, MRCA preserves
spatiotemporal consistency within the physical constraints.
Specifically, the position difference of the robots between con-
secutive time steps should obey physical constraints. Given
the position difference, the robot can reach the next target
waypoint within the speed limits of the robot:

p j(k+1) = p j(k)+∆p j(k) (2)

USENIX Association 34th USENIX Security Symposium 3965

Algorithm 1 Attack Synthesis
1: Input: MRCA Algorithm Profile (Ap), STL Spec. of Attack Goal(ϕa)
2: Output: Attack Parameters ([(ta, ∆x, ∆y), ...]) || Timeout (tout)
3: procedure ATTACKSYNTHESIS
4: Rins = initMRCA(), Ains = initAttacker()
5: Ains → [applySpatioTemporal(), applyStealthiness()]
6: for ninj ∈ [1, maxinj]: do
7: for it ∈ [1, numit): do
8: (ta, ∆x, ∆y) = Ains → planAttack(ninj)
9: Rins → applyAttackParams(attid, t, Pall, Vall)

10: Tall = Rins → calculateNextPositions()
11: scorer = Ains → evaluateRobustness(traces)
12: Ains → updateAttackParams(scorer)
13: if scorer < τr: then
14: attfound = true
15: Ains → evaluatePerformanceMetrics()
16: Ains → visualizeRobotScenarios()
17: return [(ta, ∆x, ∆y), ...]
18: end if
19: end for
20: end for
21: end procedure

where p j(k) is the position of robot j at time k, and ∆p j(k) is
the position displacement (i.e., upper-bound attack effective-
ness) by spoofing calculated by:

∆p j(k)≤ ts ∗ vmax (3)

where ts is the sampling time and vmax is the maximum ve-
locity set by the MRCA algorithm. Therefore, the attacker’s
maximum change in position stays within the physical con-
straints defined by the running algorithm. We apply these
constraints in our search function in Section 5.4 (Line 5).
Evading Attack Detection. Another essential property of our
attack design is evading attack detection. To tackle C3, we ob-
serve that most attack detection algorithms rely on thresholds
to distinguish anomalies from normal signals. These thresh-
olds are chosen to balance false alarms and detection accuracy.
Therefore, these algorithms provide opportunities for attack-
ers to inject false data into the system (i.e., hiding the attack
below the noise floor and mimicking it as a disturbance). By
altering the measurements, we can cause deviations over time
to the estimated state of the system. In this work, we consider
point-wise Chi-squared and CUSUM-based detectors [51].
(1) Chi-squared detection utilizes measurement residuals, the
difference between predicted and measured outputs. For the
ith sensor at time step k, the residual ri(k) is:

ri(k) = yi(k)− ŷi(k) (4)

Under nominal conditions, these residuals follow Gaussian
distributions, with their energy following Chi-squared distri-
butions. (2) CUSUM-based utilizes a recursive accumulation
of residuals:

Si,k =

max
(
0, Si,k−1 + ri,k −b

)
if Si,k−1 ≤ τ,

0 and k̃ = k−1 if Si,k−1 > τ.
(5)

1

2

3

time = t

2

v1

v2

v3

p1

p2

p3

v'2

p'2

1

3

2

time = t+1

p1

p2

p3

v1

v2

v3

direction

1

2
3

v''1

v''2

v''3

>

>

>

Figure 5: Dynamic waypoint calculation under FDIAs.

where Si,0 = 0, b is a tunable constant to keep the sum
bounded, and τ is the threshold. An attack is considered
stealthy if the test statistics remain within the threshold even
in the presence of false data in the measurements. We inte-
grate these constraints into the search process in Section 5.4.
We evaluate different threshold values in Section 7.

5.4 Robustness-Guided Attack Search
We search for parameters that falsify the STL formulas (de-
fined in Section 5.1). After defining the constraints, we need
to search for optimal attack parameters. By “optimal”, we
mean minimizing the number of injections while ensuring
the constraints hold. To address the challenges (C2, C3), we
leverage a search-based method. We use the MRCA algorithm
as a model to simulate the attack parameters, which are [ta,
..], [(x̄, ȳ), ..]. We define ta as the time to attack, and (x̄, ȳ) as
the position placement at the attack time as follows:

xta = xta + x̄ta , yta = yta + ȳta (6)

Similarly to the profiling of the MRCA algorithm (now
injecting false data), the model takes these states (i.e., xta , yta ,
ta) as inputs and outputs system trajectories as follows:

M : (S → Rn)→ ([T, I]→ Rs) (7)

where S is the state to be tested and n is the number of FDIs.
T are the system trajectories as a time series, I is time interval,
and s is total simulation time divided by time step (∆t).

Raven begins searching with random values for time and
position displacement parameters for each attack type, aim-
ing to violate the requirements represented as temporal logic
(Line 8). At each step, the model returns the time-series trace
of the simulation. The framework analyzes these traces and
generates new attack parameters.

Figure 5 illustrates that the attacker targets Robot 2 by
injecting spoofed data, shown as a red-dashed circle. As a
result, the robots’ next positions at t+1 (solid circles) deviate
to new locations, represented by blue-dashed circles. This
scenario repeats whenever Raven generates and injects false
data for each iteration (Line 9). After each iteration, we use a
stochastic optimizer to find the attack parameters, which aim

3966 34th USENIX Security Symposium USENIX Association

to minimize the cost function (Line 12). The cost functions
are defined based on the STL formulas (ϕ) shown in Table 1,
e.g., the cost function of an A5 attack is:

cost = ∥rcenter −ocenter∥−
(
ragent + robstacle

)
. (8)

In this expression, rcenter and ocenter are the 2D positions of
the agent and obstacle centers, respectively, and ∥rcenter −
ocenter∥ represents their Euclidean distance. The terms ragent
and robstacle are the bounding radii of the agent and obstacle,
respectively. Subtracting these radii from the center-to-center
distance computes the minimal distance between the agent
and the obstacle surfaces: a positive value implies separation,
zero indicates contact, and a negative value indicates overlap.
This way, the attacker measures the robustness of false data
injections against an STL formula quantitatively (Line 13).
Once Raven identifies input parameters that cause a violation,
the iterations end and return the parameters.

6 Implementation

To simulate our attacks in a realistic environment, we re-
viewed the existing literature and identified several limitations
in current simulators. Initially, we examined flight controller
simulators (Ardupilot [7], PX4 [58], and Paparazzi [55]), but
found that they lack comprehensive support for multi-robot
testbeds. We also evaluated the open-source tool, Swarm-
Lab [76]. However, it only offers a MATLAB [47] simulator
for swarms, which lacks high fidelity. Instead, Gazebo and
PX4 Autopilot integration provides high-fidelity physics simu-
lation, including accurate modeling of sensor noise, dynamics,
and Autopilot programs. Furthermore, SwarmLab integrates
only the Olfati-Saber [53] and Vicsek [81] algorithms, which
are formation algorithms not specifically designed for multi-
robot collision avoidance. Given these limitations, we devel-
oped a framework by extending an existing simulator [54] de-
signed for a single UAV. To extend the existing simulator, we
write 2850 LoC in Python and C++ (detailed in Appendix B).

We use the latest version of PX4 Autopilot firmware. We
deploy a separate instance of PX4 on each robot, aligned with
real-world use cases. To use PX4 in our framework, we write
1360 LoC in Python and C++.

We use PSY-TaLiRo [78], a Python package designed for
the search-based test generation of Cyber-Physical Systems
(CPS). PSY-TaLiRo offers a modular toolbox that supports
multiple temporal logic monitors and optimization engines.

We use two state-of-the-art MRCA algorithms, ORCA [80]
and GLAS [63]. These algorithms demonstrated how they
outperform current approaches in terms of robot success rate
and control effort [63]. We wrap these algorithms in Python
to use them as a model in our Raven framework. We detail
how ORCA and GLAS are selected and how Raven can be
extended to other MRCA algorithms in Appendix A.

7 Evaluation

We evaluate Raven on three testbeds: the Python simula-
tor, PX4/Gazebo-based high fidelity simulator, and Bitcraze
Crazyflie 2.0 quadrotors. We utilize four distinct maps that
represent real-world scenarios of multi-robots, similar to the
evaluation setups of previous studies [34,63,80]. We evaluate
Raven to answer the following research questions:
RQ1 What is the performance of Raven in finding successful

attacks against MRCA algorithms?
RQ2 What is the performance of Raven under different con-

figuration parameters (e.g., GNSS noise)?
RQ3 Can Raven evade the commonly deployed detectors in

the flight controller? (stealthiness)
RQ4 What are the root causes of the attacks?
RQ5 What is the performance of Raven compared to baseline

approaches?
RQ6 What is the execution time of Raven?

We run Raven on a computer with an i7-6850k 3.60GHz
CPU, 48GB RAM, running 64-bit Linux Ubuntu 22.04.
Evaluation Metrics. We evaluated the attack success of
Raven using four metrics. (1) For navigation attacks, we em-
ployed a timeliness metric that measures the robot’s ability to
reach its target position. An attack is considered successful
if the robot fails to reach the goal within twice the benign
completion time, following prior work [34]. (2) For herding
attacks, we determine the success by spatial deviation, specif-
ically when the victim robot enters an attacker-designated
region that remains unvisited under a benign operation. (3)
The effectiveness of the deadlock attack is measured by mo-
bility analysis, where success is achieved if the victim robot
becomes immobilized (position change < 0.1m) for ten con-
secutive time steps (i.e., 5 seconds). (4) For collision-based
attacks, we use a proximity threshold where success is defined
by the minimum distance between entities (robot-robot or
robot-obstacle) reaching 0, which indicates physical contact.

7.1 Effectiveness (RQ1)
First, we evaluate Raven’s performance in finding attacks
against ORCA and GLAS. Next, we present two case studies,
a herding attack and an end-to-end real-world attack demon-
stration with Crazyflie drones. Lastly, we provide a case study
that illustrates a multiple-victim robot attack in Appendix A.

Table 2 shows the effectiveness of Raven in identifying
attacks. The column “Attack Goal” specifies five distinct at-
tack goals. “Benign Case” represents scenarios without any
attack. For benign and adversarial cases, we performed 10
runs and documented the results. The column “Attack Discov-
ery” indicates whether Raven successfully identifies the attack
parameters, such as attack time and position displacement. In
these experiments, we conducted 5 injections.

Raven consistently identified all attack parameters in both
algorithms. In only one instance, the “herding attack” on

USENIX Association 34th USENIX Security Symposium 3967

Table 2: Performance of Raven in finding attacks against two representative MRCA algorithms.

Attack Goal Benign Case Attack Discovery Min # Injections Attack Plan Time Root Cause†

Experiments on ORCA
Robot-Robot Collision 0/10 (0%) 10/10 (100%) 1 2.38 s / 2.6 s / 2.94 s HR-ICM-PTT-FC

Robot-Obstacle Collision 0/10 (0%) 10/10 (100%) 1 2.5 s / 4.2 s / 4.6 s HR-ICM-PTT-FC
Herding 0/10 (0%) 10/10 (100%) 1 1.97 s / 2.26 s / 2.53 s HR-ICM-PTT

Deadlock 0/10 (0%) 10/10 (100%) 1 1.22 s / 2.2 s / 2.44 s HR-ICM-PTT
Navigation Delay 0/10 (0%) 10/10 (100%) 1 1.01 s / 3.35 s / 5.63 s HR-ICM-PTT

Experiments on GLAS
Robot-Robot Collision 0/10 (0%) 10/10 (100%) 1 7:39 s / 7:58 s / 8:54 s ICM-PTT-LA

Robot-Obstacle Collision 0/10 (0%) 10/10 (100%) 1 8:4 s / 10:2 s / 14:8 s ICM-PTT-LA
Herding 0/10 (0%) 9/10 (90%) 3 2:35 s / 2:4 s / 2:42 s ICM-PTT-LA

Deadlock 0/10 (0%) 10/10 (100%) 3 1:54 s / 2:44 s / 2:52 s ICM-PTT-LA
Navigation Delay 0/10 (0%) 10/10 (100%) 3 2:15 / 2:22 s / 2:36 s ICM-PTT-LA

† HR: High Reactivity, ICM: Imperfect Communication and Measurements, PTT: Planning vs. Time Tradeoff, LA: Learning-based Algorithms, FC: Feasibility of Collisions.

Figure 6: Demonstration of the herding attack on ORCA: (a)
the benign scenario, where the robots navigate toward their
goal positions, and (b) the attack scenario, where the victim
robot is guided into an attacker-defined zone.

GLAS caused the tool to time out. However, increasing the
number of runs eventually led to successful attack identifica-
tion. Additionally, we iteratively reduced the data injection
parameters when Raven detected an attack, aiming to identify
the minimum number of false messages required to achieve
the attacker’s objective, as shown in Algorithm 1. The column
“Min # Injections” represents the minimum number of false
data injections needed for a successful attack.

Case Study 1 (Fig. 6) - Herding Attack. Raven discovers a
herding attack on ORCA in the PX4/Gazebo simulator, as
shown in Figure 6. Initially, three robots navigate to their re-
spective goal positions (top-left) from their starting positions
(bottom-right) while avoiding inter-robot collisions (Left). At
t=12.1, the false data injection causes px4_1 robot to recal-
culate its target velocity to avoid a collision (Right). As a
result, px4_1 robot veers off toward the attacker-designated
area (shown as a circle). After the attack, the victim robot
attempts to return to its optimal path. This shows how a victim
robot can be shepherded into a specific zone.

Case Study 2 - Experiment with Crazyflie 2.0 Quadrotors.
We conducted a real-world experiment using Crazyflie 2.0
quadrotors to demonstrate an end-to-end attack. Our setup
includes three main components: (1) a motion capture mod-

ule to receive real-time marker positions of Crazyflies, (2)
the MRCA algorithm to calculate dynamic waypoints, and
(3) an off-board module to transmit velocity commands to
Crazyflies. We used a 6m × 6m indoor environment equipped
with six Qualysis Motion Capture Cameras. We deployed
three Crazyflies. We set the MRCA’s time step to 0.5. Fig-
ure 11 in Appendix A demonstrates the test environment. In
the benign run, robots navigated around the obstacle on the
right side. Under the shepherding attack, the target robot in-
duced the victim robot to deviate from its intended path and
guided it onto the longer route. A demonstration video is
available on the project website.

7.2 Analysis of Different Parameters (RQ2)

We tested different parameters, varying from operator errors
in false data injection to different GNSS tolerance thresh-
olds in our Python simulator. We present further auxiliary
experiments in Appendix A.
Attack Reproducibility with Spoofing Time Delays. To test
reproducibility with delays in injection, we first identified an
attack using a single FDI with Raven. The attacker executed a
“deadlock attack” with parameters: time = 6.0 s, x = -0.26, y
= 2.20. We then examined how spoofing time delays affected
the attack’s success by sampling delays from [−2,+2] sec-
onds and running the experiment five times. The attack was
successful 3 out of 5 times. Successful attacks occurred at t
= 4.0 and t = 5.0, while failed attempts at t = 7.0 and t = 8.0
showed the robots had passed the obstacle and could not be
placed in a deadlock position.
Different Target and Victim Robots. We demonstrated that
Raven effectively finds the attack parameters for various target
and victim robots. In Env3, we chose Robot 2 as the victim
instead of Robot 0, which was the victim in Env2. Raven

successfully identified the optimal attack parameters under
different environmental conditions and with different victim
robots. In addition, we tested scenarios with multiple target
robots while finding attack parameters. We observed that

3968 34th USENIX Security Symposium USENIX Association

having multiple target robots required fewer iterations and
fewer false data injections. Thus, having multiple target robots
can facilitate attack identification in terms of the time required
to find the attacks and the number of injections needed.

We evaluate every target–victim combination, labeling each
as feasible (optimal or suboptimal) or infeasible. For each pair,
we execute a shepherding attack and record the number of
FDIs required. Table 5 in Appendix A summarizes these
results. From this experiment, a key result we found is that at-
tacks require substantially fewer FDIs (i.e., 5 messages) when
the target and victim robots are adjacent, while the presence
of intermediate robots between the target and victim increases
the number of FDIs (i.e., 10 messages). Raven iterates over
all pairs and returns the one minimizing FDIs for each attack.
Attacks with Varying Number of Robots. We evaluated the
scalability of attacks on varying numbers of robots. We ex-
tended our evaluation to scenarios involving n={2,4,8} robots
in two different environments. In each scenario, the adversary
controls one target robot to affect one victim robot. Raven
successfully identified effective attack parameters for these
n-robot configurations, including those with smaller (n=2)
and larger (n={4,8}) numbers of robots.

We formalize the compromise ratio α = |T |/|R |, where
T denotes the number of targets that the adversary controls
and R the set of all robots. We demonstrate attacks in sce-
narios where the compromise rate varies from 50% to 12.5%.
Raven’s attacks remain effective even at low compromise
ratios, finding both collision and shepherding attacks. Our
results show that successful attacks can often be launched by
an adversary controlling only a single target T = 1. Demon-
stration videos are available on our project webpage.

7.3 Analysis of Stealthiness (RQ3)

Statistical Detectors. Prior research [40, 75] demonstrated
that attackers can inject false data into GNSS data to induce
deviations stealthily, evading both Chi-squared and CUSUM
detectors [51]. Aligning with them, we define an attack as
“stealthy” if injected false data does not trigger alarms.

Theoretically, Raven can be configured to minimize detec-
tion and achieve stealthiness. It can craft attacks that maintain
spatio-temporal and statistical consistency with sensor data.
This allows the resulting statistics from detectors to remain
below their thresholds. To support this, we conducted experi-
ments by injecting false data into GNSS readings. Similar to
sensor attacks, the results of these detectors on insiders and
Remote ID attackers are demonstrated in Appendix A.

To assess stealthiness, we employ the residual-based
anomaly detection integrated in PX4 EKF [58]. During navi-
gation, EKF propagates previous state estimates forward via
a process model to predict subsequent GNSS measurements.
Upon receiving actual GNSS data, the residual is calculated as
the difference between the observed measurement and EKF’s

1.0

0.5

0.0

Figure 7: The real-time alarm rate of the anomaly detectors
for “Navigation Delay Attack” with n = 20 injections.

predicted measurement. If normalized residual exceeds a pre-
defined threshold, EKF flags the measurement as anomalous.

Figure 7 demonstrates that the Raven-generated attack pa-
rameters on target drone consistently maintain test statistics
below the normalized operational detection threshold (1.0).
During GNSS spoofing, neither the Chi-squared detector nor
the CUSUM detector (3-second window) triggered any alarms.
This absence of detector alarms at standard operational thresh-
olds demonstrates the practical stealthiness of the attacks.
Raven can also adjust its attack parameters to maintain stealth-
iness under varying GNSS noise conditions. A real-time visu-
alization of the detector outputs during the UAV’s mission in
PX4/Gazebo is available on the project website.
Performance with Heightened Detector Sensitivity. To fur-
ther investigate the impracticality of detecting our Raven-
generated attack parameters, which closely mimic sensor
noise, we analyzed detector performance under conditions of
heightened sensitivity. To assess the detectors’ ability to cap-
ture these subtle attack parameters with increased sensitivity
and to extract precise performance metrics under such con-
ditions, we conducted a sensitivity analysis using moderate
GNSS noise (covariance 1.0) and lower detection thresholds
than the operational level of 1.0 shown in Figure 7. To calcu-
late the optimal threshold, we utilized Youden’s index [89]
that maximizes the difference between TPR and FPR rates
(shown in Figure 9 in Appendix). The Chi-squared detector
achieved optimal performance at a threshold of 0.3596, with
Precision 0.2426, Recall 0.4675, FPR 0.2014, F1 0.3194, J
0.2661. The CUSUM detector achieved optimal performance
at a threshold of 0.2954, with Precision 0.3939, Recall 0.8889,
FPR 0.1887, F1 0.5459, J 0.7002. These metrics reveal a crit-
ical trade-off: achieving a high TPR necessitates a high FPR.
While a significantly lowered threshold can achieve a high
Recall for the CUSUM detector (0.8889), this apparent im-
provement also results in low Precision (0.3939), indicating
that the detector would frequently mark benign noise as at-
tacks. Similarly, the Chi-squared detector, while achieving
a Recall of 0.4675 under these conditions, shows an even
higher FPR (0.2014) and still lower Precision (0.2426). Thus,
for both detectors, increasing sensitivity (by lowering thresh-
olds) to catch subtler attacks yields high FPR (15-20%) and
very low precision (0.25), making it impractical for real-world
deployment on UAVs. This impracticality is what allows the
attacks to maintain their effective stealthiness.

USENIX Association 34th USENIX Security Symposium 3969

Conclusion on Statistical Stealthiness. Our analysis leads
to two key conclusions. First, Raven-generated attacks can re-
main undetected by both detectors. As shown in Appendix A,
we obtained similar results for insider and Remote ID attack
scenarios. Aligning with prior work, which conducts stealthy
attacks using GNSS noise [87], Raven can utilize such noise
in conducting attacks. Second, for noise-characteristic attacks,
simply lowering the threshold is ineffective; while it might in-
crease detections, it significantly increases false alarms. Such
high FPR (0.2014) and low precision (0.2426) are impracti-
cal, as reliable anomaly detectors deployed in UAVs typically
achieve FPR < 0.01 and Precision > 0.99 [3, 69].
System-level Detector. In addition to statistical detectors, sys-
tem monitoring has also been used to detect GNSS spoofing.
In particular, M2MON [38] protects GNSS spoofing by count-
ing the number of ephemeris messages (n=8 in 3 minutes)
in CPU’s MMIO/UART path and raises an alert if it exceeds
a hardcoded threshold (i.e., maximum of n=12). Raven can
evade M2MON in three ways. (1) GNSS meaconing [49]:
attacker records genuine RF signals and rebroadcasts them at
higher power so each tracking channel locks onto the spoofed
wave, yet the module still decodes exactly N ephemeris pack-
ets on UART. (2) Null-plus-spoof [57]: the spoofer transmits
two RF signals, a phase-coherent nulling signal to erase the
real satellites and a simultaneous counterfeit signal to replace
them. Since M2MON only counts the GPS chip’s UART out-
put, the receiver still produces exactly N decoded packets.
(3) GNSS-degraded environments: Obstructions can block
satellite signals, naturally reducing the ephemeris count. As
a result, the count of legitimately received ephemeris mes-
sages may fall below normal levels. This creates an opportu-
nity for attackers to insert counterfeit signals containing fake
ephemeris data without exceeding the threshold.

7.4 Root Cause Analysis (RQ4)
We analyzed all the vulnerabilities we found and categorized
them into two groups, containing a total of five distinct items.

7.4.1 System-level Security Issues.

(1) High Reactivity. When the two algorithms are compared,
ORCA exhibits much higher reactivity to the messages re-
ceived from other robots. This makes a single false data injec-
tion attack feasible against ORCA. For instance, in the naviga-
tion delay attack, one false data injection can cause the victim
robot to deviate significantly from its optimal path, choos-
ing a longer alternative route. We attribute this to ORCA’s
classical optimization-based formulation, which can abruptly
change the computed velocity each iteration, while GLAS, a
learning-based method, results in smoother velocity changes.
(2) Imperfect Communication and Measurements. Current
MRCA algorithms rely on perfect communication between
the robots. Yet, in real-world scenarios, issues related to the

integrity or availability of state-sharing messages can arise.
In this paper, we demonstrate that FDIAs can occur due to the
integration of malicious insiders in heterogeneous Internet of
Drone environments, causing attacks in multi-robots.

7.4.2 Algorithmic Design Flaws

(3) Planning vs. Time Tradeoff. There is a trade-off between
the planning horizon and the available time. This balance
requires careful consideration in system design. Collision
avoidance algorithms should plan with a longer horizon; how-
ever, this requires more time and necessitates ongoing global
map maintenance. Conversely, focusing on immediate actions
neglects the global map, making the robots prone to attacks.
(4) Learning-based Algorithms. For learning-based ap-
proaches such as GLAS, training in diverse environments and
configurations can improve robustness against FDIAs. For in-
stance, altering the robots’ radii does not significantly impact
their trajectories in GLAS, indicating that the algorithms may
not guarantee collision-free navigation with different robot
sizes. Similarly, changing the time step did not significantly
affect the robot trajectories, suggesting that limited training
data is used. For example, when we changed the radius from
0.15 to 0.5 in GLAS, the robots crashed into each other.
(5) Feasibility of Collisions. Velocity obstacle-based MRCA
algorithms (e.g., ORCA) have feasible and infeasible phases.
In feasible state, the algorithm guarantees a collision-free en-
vironment. However, in infeasible state, the algorithm selects
the safest possible velocity, which can still result in collisions.
If the attacker sends messages to introduce infeasibilities
(as Raven discovers), they can cause the victim robot to col-
lide with other robots and obstacles. Additionally, stopping
to avoid collisions can lead to deadlock, where robots wait
indefinitely to move out of the infeasible region.

7.5 Baseline Comparisons (RQ5)

Naive Attacks. We compare Raven to naive attacks in two
different environments. The naive approach selects a random
time between [0,mission_time] and chooses a random posi-
tion displacement within the same constraints as Raven. We
ran each method ten times and present their success rates
in Table 3. We tested both methods with 1, 5, and 10 FDIs.
Random attacks never produced shepherding attacks and only
achieved a 10% collision rate with five false messages. In
contrast, Raven achieved a 100% success rate in discovering
correct attack parameters for both attack categories.
Comparison with SF. The most relevant work on finding vul-
nerabilities in AMRs are SwarmFuzz (SF) [87] and Swarm-
FlawFinder (SFF) [34]. Among them, SFF cannot perform
remote attacks because it requires an external robot to inter-
act with the victim physically. In contrast, SF performs GPS
spoofing attacks by manipulating targets to cause collisions.

3970 34th USENIX Security Symposium USENIX Association

Table 3: A comparison of Raven with baseline methods.

Shepherding Attacks Collision Attacks
Method #Injections Attack Success % #Injections Attack Success %
Benign - 0 - 0

Naive Attacks 1/5/10 0/0/0 1/5/10 0/10/20
Swarmfuzz [87] 1/5/10 -/-/- 1/5/10 0/0/0

Raven 1/5/10 100/100/100 1/5/10 100/100/100

We compared Raven with SF both qualitatively and quanti-
tatively. To summarize SF’s methodology, SF utilizes graph
theory to select victim-target pairs and employs gradient de-
scent to determine attack parameters. Its methodology focuses
on one objective (robot-obstacle collisions). We integrated SF
into our environment to test on ORCA and GLAS.

We ran their methodology with three robots in two different
environments. To align with their methodology, we conducted
experiments on each obstacle individually, ensuring only one
was present in the environment at a time. However, SF could
not detect any robot-obstacle collisions. We investigated po-
tential causes. We found that SF requires the target and victim
to pass on different sides of the obstacle. This requirement
prevented SF from identifying collisions that Raven can detect.
Next, we modified the environment to have one robot pass left
of an obstacle and the other two pass right. However, SF could
not find the correct attack parameters. We analyzed the root
causes and identified three main restrictions: (1) conducting
only horizontal spoofing, (2) conducting only constant spoof-
ing (i.e., always the same displacement), and (3) the target
robot must align with the obstacle along the x-axis.

7.6 Time Efficiency (RQ6)
We measured the time required to find the attack parameters
for each attacker goal. Table 2 “Attack Plan Time” column
shows the min/median/max time values. For instance, the at-
tack plan time for a herding attack on ORCA is 1.97 s / 2.26
s / 2.53 s. Although the configurations, such as maximum
speed, were proportionally set to have similar conditions in
both algorithms, it took more than three times longer on aver-
age to find the attacks on GLAS than on ORCA. For example,
it takes 8 min 4 s / 10 min 2 s / 14 min 8 s on GLAS to find
robot-obstacle collisions. Thus, Raven requires more runs and
iterations to find the attack parameters against GLAS.

8 Discussion and Limitations

Chain-of-Reactions in Large Multi-Robot Systems. In
large multi-robot systems, manipulating a robot’s position ini-
tiates cascading indirect effects throughout the system. From
an attacker’s standpoint, while the inherent density of large
multi-robot systems complicates maintaining a collision-free
state, executing targeted attacks (e.g., herding) becomes more
challenging. Such targeted attacks necessitate a higher num-
ber of FDIs and time for Raven to find effective parameters.

Vision-based Detect-and-Avoid. One way to mitigate our
attacks could be leveraging vision sensors (e.g., camera or
LiDAR) to confirm the validity of the received data. However,
recent work [26, 85] showed that image classifiers can be
misled by adding small adversarial noises to the input (e.g.,
a street sign image). Therefore, our attacks can be combined
with adversarial noises to evade vision-based attack detection.

CA Algorithms in Autopilot Frameworks. We analyzed
collision-avoidance (CA) algorithms in widely used open-
source SITL Autopilot frameworks (Ardupilot [7], PX4 [58],
Paparazzi [55]). However, current implementations do not
support collective multi-robot collision avoidance as they do
not incorporate other robots’ positions or velocities into the
ego vehicle’s next waypoint calculation. Instead, they support
single-robot collision avoidance. To demonstrate whether
future extensions of these algorithms are vulnerable to our
attacks, we conducted an experiment in Ardupilot. In Ap-
pendix A, we demonstrate that the Bendyruler algorithm [52]
in Ardupilot remains vulnerable to deadlock attacks in a sce-
nario with static obstacles and geofences. Thus, we expect that
extending these algorithms to multi-robots would yield simi-
lar attack success rates. Furthermore, each robot may operate
with an individual CA algorithm. However, even in such envi-
ronments, FDIAs can achieve similar success rates. Beyond
the five attacks discussed in this paper, “livelock” attacks are
also possible, where two robots repeatedly move in the same
direction due to independently operating CA algorithms.

Attack Recovery Frameworks. Raven’s stealthiness against
standard anomaly detectors (in Section 7.3) directly under-
mines current attack recovery frameworks, as the detection
stages are crucial for activating contemporary recovery sys-
tems [19, 21]. DeLorean [21] employs a diagnosis-guided
recovery approach against Sensor Deception Attacks (SDAs).
It identifies targeted sensors through causal analysis and re-
constructs states selectively using historical data. Similarly,
SpecGuard [19] adopts a specification-aware recovery method
leveraging Deep Reinforcement Learning (Deep-RL) to main-
tain mission compliance during attacks. Its reactive control
variant, like DeLorean, activates only upon external detection
alerts. These mechanisms critically depend on accurate and
timely alerts from anomaly detectors. However, as demon-
strated in Section 7.3, detectors prone to false alarms either
fail to trigger recovery or cause inappropriate recovery initia-
tions. By effectively evading or delaying these alerts, Raven’s
attacks can significantly compromise the reliability and effec-
tiveness of existing recovery frameworks.

Potential Mitigations to Root Causes of Vulnerabilities. To
address the identified root causes, we propose the following
improvements: (1) Learning-based Algorithms: Robustness
against manipulated data in learning-based algorithms can be
enhanced through training with diverse datasets and employ-
ing adversarial training techniques. (2) Feasibility of Colli-
sions: Defending against attacks that induce infeasible states

USENIX Association 34th USENIX Security Symposium 3971

Table 4: A comparison of Raven with vulnerability discovery
systems in autonomous multi robots.

System
Input to
Target
Vehicle

Remote
Attack

Capability

Multiple
Attackers
Support

Multiple
Victims
Support

Attack
Optimization

Attack
Stealthiness

Deadlock
Attacks

SFF [34] Continuous
Maneuver

No (External
Attack Drone) ✓ ✓ N/A × ×

SF [87] Constant
Spoofing ✓ × × ✓ × ×

Raven Intermittent
Spoofing ✓ ✓ ✓ ✓ ✓ ✓

† SFF: SwarmFlawFinder, SF: SwarmFuzz.

or unavoidable collisions can involve handling such states sep-
arately, for instance, via priority-based movement, or by set-
ting conservative safety configurations. (3) High-Reactivity:
Counteracting vulnerabilities arising from high reactivity to
false messages can be achieved by applying temporal filter-
ing to smooth out sudden, potentially malicious, changes in
incoming data. (4) Imperfect Communication: Implementing
message authentication for internal networks against intrud-
ers, employing encryption and authentication for broadcast
systems like Remote-ID, and utilizing techniques such as Mul-
tilateration (MLAT) for verifying GNSS signals can mitigate
false data injection and spoofing [37, 77]. (5) Planning vs.
Time Tradeoff : Improving the quality and safety of collision
avoidance decisions can involve planning over a longer time
horizon while maintaining execution at shorter periods.

9 Related Work

Vulnerability Discovery in Robotic Vehicles. Prior research
has investigated the vulnerabilities of robotic vehicles. Recent
work [41] explored bugs by fuzzing robots’ control software.
Another study [16] discovered bugs in the safety checks of
robotic vehicles. Another work [20] proposes three types of
attacks (false data injection, artificial delay, and switch-mode
attacks) targeting robotic vehicles. However, these studies
focus on a single robot and do not address bugs/vulnerabil-
ities in multi-robot navigation. In the autonomous vehicle
(AV) domain, prior work has discovered attacks using maneu-
vers [44,66,73]. However, the AV domain differs from mobile
robots due to different objectives, such as lane keeping, and
different control systems with varying degrees of freedom.

Similarly, in vehicle platooning domain, prior studies [1,18]
have examined FDIAs, with practical countermeasures [11,
50]. However, FDIAs in vehicle platooning differentiate from
our work in two ways: (1) vehicle platooning operates as
a single unit along fixed lanes. Thus, vehicles have limited
degrees of freedom and maintain a rigid formation, and (2)
vehicle platooning follows a leader-follower architecture. The
leader sets the trajectory and speed for the platoon, where
compromising a leader affects the entire platoon. Instead,
MRCA algorithms we focus on operate without enforcing a
rigid, lane-bound formation and are fully decentralized.

Table 4 compares Raven with previous frameworks

for finding vulnerabilities of multi-robot systems. Swarm-
FlawFinder [34] requires an external drone for its attack
methodology [13]. It focuses on swarm algorithms that pri-
oritize formation over collision avoidance, using an addi-
tional formation force along with goal and collision avoidance
forces. Furthermore, it limits its search space to only four dis-
crete actions. Unlike SwarmFlawFinder, Raven focuses on
MRCA algorithms and does not require close proximity to
robots. Additionally, we do not limit the search space or con-
strain our mutation strategy to discrete actions.

SwarmFuzz [87] focuses on swarm control algorithms and
finds propagation vulnerabilities. Its methodology focuses
on horizontal spoofing (i.e., left or right), which limits the
search space for finding diverse and unique attacks. Swarm-
Fuzz also attempts to discover stealthy attacks but employs
constant spoofing, meaning the spoofing continues until the
victim robot is hit or the framework times out. This approach
reduces stealthiness and can be detected by window-based
detectors [60]. In contrast, Raven investigates the MRCA algo-
rithms and introduces a framework without limiting the search
space. Moreover, Raven considers ripple effects by checking
all direct and indirect interactions among robots to achieve
five distinct attack goals. Unlike SwarmFuzz, Raven also min-
imizes the number of injections through discrete spoofing.
This method allows the attacker to choose different times-
tamps for conducting attacks, thereby minimizing the number
of FDIAs and reducing the risk of detection.

Optimal and Stealthy Attack Planning in Multi-Robots.
Recent work [39] has focused on stealthy attacks on UAVs,
primarily targeting perception modules. In contrast, our re-
search targets multi-robot navigation algorithms. Another
study [83] introduced the concept of physical masquerade
attacks in multi-robot systems, assuming one robot is compro-
mised. While their work focuses on multi-robot pathfinding
and includes observation planning for attack detection, it does
not address the optimization and minimization of attack pa-
rameters for stealthy attacks. To the best of our knowledge,
Raven is the first to perform optimal attacks by minimizing
the number of false data injections to achieve shepherding
and collision attacks in multi-robot systems. Our approach
ensures that attacks are both effective and difficult to detect.

10 Conclusion

We introduced Raven, a tool that identifies effective and
stealthy attacks on MRCA algorithms. Specifically, we iden-
tified and analyzed vulnerabilities in state-of-the-art MRCA
algorithms. We found these algorithms vulnerable to FDIAs,
leading to shepherding and collision attacks. Our experiments
under various configurations showed the effectiveness of in-
jections in disrupting multi-robot missions. The inherent com-
plexity of cooperation in these systems highlights the need
for robust MRCA algorithms to address these vulnerabilities.

3972 34th USENIX Security Symposium USENIX Association

11 Acknowledgments

We appreciate the valuable feedback and suggestions from our
shepherd and anonymous reviewers. We also thank Baskın
Şenbaşlar for helpful discussions during idea exploration.
This research was partially funded by the National Science
Foundation (NSF) through grants CNS-2144645 and IIS-
2229876. The findings, conclusions, and recommendations
presented in this paper are solely those of the authors and do
not necessarily represent the views of the NSF.

12 Ethics Considerations

Ethical Considerations. This paper proposes new attacks
against MRCA algorithms, which can cause shepherding and
collision attacks. Discovering these attacks is vital to improv-
ing the security of MRCA against FDIAs. AMR developers
can use Raven to identify vulnerabilities in their MRCA algo-
rithms. They can then revisit their assumptions or patch their
algorithms to mitigate the attacks. Since Raven uses temporal
logic, developers can also define their formulas and test their
algorithms. To further mitigate the negative consequences
of publishing new attacks, we propose potential countermea-
sure techniques. To this end, we disclosed our findings to
the ORCA and GLAS developers. Our findings pave the way
for future research focused on enhancing the robustness and
resilience of MRCA algorithms in adversarial conditions.

Stakeholders. The semantic vulnerabilities identified in this
study diverge from conventional software bugs. Instead of
merely uncovering typical software bugs, our approach re-
veals mission deviations in multi-robots that pose potential
risks to human safety, robotic operations, and the environment.
Consequently, we have communicated our findings to indus-
try stakeholders and agencies. Specifically, we have shared
our report with ten multi-robot companies or agencies: Ama-
zon Robotics (Prime Air), Wing, Waymo, Cruise, Starship
Technologies, Nuro, Alibaba, Cybersecurity and Infrastruc-
ture Security Agency, Federal Aviation Administration, and
European Union Aviation Safety Agency.

Mitigating Potential Harm. We did not conduct indoor or
outdoor GNSS spoofing attacks. We demonstrated false data
injections from insiders in our real-world experiments. We
conducted such experiments in a lab environment to mitigate
any potential harm to humans or the environment.

13 Open Science

We have provided the artifacts of our study online [88]. We
have made the implementations of attacks on ORCA and
GLAS, the tested environments, supplementary experiments,
and the visualization library publicly available.

References

[1] Ahmed Abdo, Sakib Md Bin Malek, Zhiyun Qian, Qi Zhu,
Matthew Barth, and Nael Abu-Ghazaleh. Application level
attacks on connected vehicle protocols. In International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID),
2019.

[2] Laith Abualigah, Ali Diabat, Putra Sumari, and Amir H Gan-
domi. Applications, deployments, and integration of internet
of drones (iod): a review. IEEE Sensors Journal, 2021.

[3] Khattab M Ali Alheeti, Fawaz Khaled Alarfaj, Mohammed
Alreshoodi, Naif Almusallam, and Duaa Al Dosary. A hybrid
security system for drones based on icmetric technology. Plos
one, 2023.

[4] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beardsley,
and Roland Siegwart. Reciprocal collision avoidance for mul-
tiple car-like robots. In IEEE International Conference on
Robotics and Automation, 2012.

[5] Amazon patented a fantastical floating airship warehouse for its
delivery drones. https://www.theverge.com/2016/12/29/

14114190/amazon-patent-drone-airship-delivery, 2016.
[Online; accessed 1-December-2023].

[6] Amazon’s 100 drone deliveries puts prime air far behind al-
phabet’s wing and walmart partner zipline. http://tinyurl.
com/3yrzby8b, 2023. [Online; accessed 1-December-2023].

[7] Ardupilot. https://ardupilot.org, 2024. [Online; accessed
1-June-2024].

[8] Syeda Nazia Ashraf, Selvakumar Manickam, Syed Saood Zia,
Abdul Ahad Abro, Muath Obaidat, Mueen Uddin, Maha Abdel-
haq, and Raed Alsaqour. Iot empowered smart cybersecurity
framework for intrusion detection in internet of drones. Scien-
tific Reports, 2023.

[9] Automatic dependent surveillance-broadcast (ads-b). https:
//www.faa.gov/air_traffic/technology/adsb, 2023. [On-
line; accessed 01-January-2025].

[10] Lailla MS Bine, Azzedine Boukerche, Linnyer B Ruiz, and
Antonio AF Loureiro. Leveraging urban computing with the
internet of drones. IEEE Internet of Things Magazine, 2022.

[11] Roghieh A Biroon, Zoleikha Abdollahi Biron, and Pierluigi
Pisu. False data injection attack in a platoon of cacc: Real-time
detection and isolation with a pde approach. IEEE transactions
on intelligent transportation systems, 2021.

[12] Browse public log files. https://review.px4.io/browse,
2024. [Online; accessed 1-January-2025].

[13] Matthias R Brust, Grégoire Danoy, Pascal Bouvry, Dren Gashi,
Himadri Pathak, and Mike P Gonçalves. Defending against in-
trusion of malicious uavs with networked uav defense swarms.
In IEEE Local Computer Networks workshops (LCN work-
shops), 2017.

[14] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won
Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z Morley
Mao. Adversarial sensor attack on lidar-based perception in au-
tonomous driving. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019.

USENIX Association 34th USENIX Security Symposium 3973

https://www.theverge.com/2016/12/29/14114190/amazon-patent-drone-airship-delivery
https://www.theverge.com/2016/12/29/14114190/amazon-patent-drone-airship-delivery
http://tinyurl.com/3yrzby8b
http://tinyurl.com/3yrzby8b
https://ardupilot.org
https://www.faa.gov/air_traffic/technology/adsb
https://www.faa.gov/air_traffic/technology/adsb
https://review.px4.io/browse

[15] Ming Chen, Jianyi Liu, Jinlong Pang, Zhiqiang Jian, Pei Chen,
and Xinhu Zheng. Multi-risk aware trajectory planning for car-
like robot in highly dynamic environments. In IEEE Intelligent
Transportation Systems (ITSC), 2023.

[16] Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and
Dongyan Xu. Cyber-physical inconsistency vulnerability iden-
tification for safety checks in robotic vehicles. In ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2020.

[17] Andrei Costin, Aurélien Francillon, et al. Ghost in the air
(traffic): On insecurity of ads-b protocol and practical attacks
on ads-b devices. Black Hat USA, 2012.

[18] Soodeh Dadras, Ryan M Gerdes, and Rajnikant Sharma. Vehic-
ular platooning in an adversarial environment. In ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2015.

[19] Pritam Dash, Ethan Chan, and Karthik Pattabiraman. Spec-
guard: Specification aware recovery for robotic autonomous
vehicles from physical attacks. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2024.

[20] Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman.
Out of control: stealthy attacks against robotic vehicles pro-
tected by control-based techniques. In Annual Computer Secu-
rity Applications Conference, 2019.

[21] Pritam Dash, Guanpeng Li, Mehdi Karimibiuki, and Karthik
Pattabiraman. Diagnosis-guided attack recovery for securing
robotic vehicles from sensor deception attacks. In ACM ASIA
Conference on Computer and Communications Security, 2024.

[22] Abdelouahid Derhab, Omar Cheikhrouhou, Azza Allouch,
Anis Koubaa, Basit Qureshi, Mohamed Amine Ferrag, Lean-
dros Maglaras, and Farrukh Aslam Khan. Internet of drones
security: Taxonomies, open issues, and future directions. Ve-
hicular Communications, 2023.

[23] Vishal Dey, Vikramkumar Pudi, Anupam Chattopadhyay, and
Yuval Elovici. Security vulnerabilities of unmanned aerial
vehicles and countermeasures: An experimental study. In
VLSID, 2018.

[24] Distributed optimal reciprocal collision avoidance. https:

//github.com/lis-epfl/swarmlab, 2019. [Online; accessed
1-June-2024].

[25] Drone wars: Developments in drone swarm technology.
https://tinyurl.com/46tvc7v9, 2025. [Online; accessed
21-January-2025].

[26] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi
Kohno, Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song.
Robust physical-world attacks on machine learning models.
arXiv preprint arXiv:1707.08945, 2017.

[27] Federal aviation administration. %https://www.faa.gov/,
2024. [Online; accessed 01-January-2025].

[28] gazebo. https://gazebosim.org/home, 2024. [Online; ac-
cessed 1-June-2024].

[29] Georgia tech’s new coordinated drone swarm deliv-
ery system. https://consortiq.com/uas-resources/

drone-swarm-delivery-system, 2023. [Online; accessed 1-
December-2023].

[30] Mirmojtaba Gharibi, Raouf Boutaba, and Steven L Waslander.
Internet of drones. IEEE Access, 2016.

[31] User guidelines for single base real time gnss po-
sitioning. https://www.ngs.noaa.gov/PUBS_LIB/

NGSRealTimeUserGuidelines.v2.1.pdf, 2024. [Online;
accessed 1-June-2024].

[32] Dynamic harmonic notch filters. https://ardupilot.org/

copter/docs/common-imu-notch-filtering.html, 2024.
[Online; accessed 1-June-2024].

[33] Bart Hermans and Luc Gommans. Targeted gps spoofing.
Research Project Report, 2018.

[34] Chijung Jung, Ali Ahad, Yuseok Jeon, and Yonghwi Kwon.
Swarmflawfinder: Discovering and exploiting logic flaws of
swarm algorithms. In IEEE Symposium on Security and Pri-
vacy (S&P), 2022.

[35] Homayun Kabir, Mau-Luen Tham, and Yoong Choon Chang.
Internet of robotic things for mobile robots: concepts, technolo-
gies, challenges, applications, and future directions. Digital
Communications and Networks, 2023.

[36] Rudolph Emil Kalman. A new approach to linear filtering and
prediction problems. 1960.

[37] Colin Kelsey, David Laverty, and John O’Raw. Multilateration
method for locating gnss spoofing attacks affecting substation
clocks. In 2022 33rd Irish Signals and Systems Conference
(ISSC), 2022.

[38] Arslan Khan, Hyungsub Kim, Byoungyoung Lee, Dongyan
Xu, Antonio Bianchi, and Dave Jing Tian. M2MON: Build-
ing an MMIO-based security reference monitor for unmanned
vehicles. In USENIX Security, 2021.

[39] Amir Khazraei, Haocheng Meng, and Miroslav Pajic. Stealthy
perception-based attacks on unmanned aerial vehicles. arXiv
preprint arXiv:2303.02112, 2023.

[40] Amir Khazraei, Haocheng Meng, and Miroslav Pajic. Black-
box stealthy gps attacks on unmanned aerial vehicles. arXiv
preprint arXiv:2409.11405, 2024.

[41] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi,
Z Berkay Celik, and Dongyan Xu. Pgfuzz: Policy-guided
fuzzing for robotic vehicles. In NDSS, 2021.

[42] Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, An-
tonio Bianchi, and Dongyan Xu. Pgpatch: Policy-guided logic
bug patching for robotic vehicles. In IEEE Symposium on
Security and Privacy (S&P), 2022.

[43] Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Anto-
nio Bianchi, and Dongyan Xu. Patchverif: Discovering faulty
patches in robotic vehicles. In USENIX Security, 2023.

[44] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael
Sullivan, Siva Kumar Sastry Hari, Zbigniew Kalbarczyk, and
Ravishankar Iyer. Av-fuzzer: Finding safety violations in au-
tonomous driving systems. In IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2020.

[45] Low-pass filter. https://docs.px4.io/main/en/config_mc/
filter_tuning.html, 2024. [Online; accessed 1-June-2024].

3974 34th USENIX Security Symposium USENIX Association

https://github.com/lis-epfl/swarmlab
https://github.com/lis-epfl/swarmlab
https://tinyurl.com/46tvc7v9
% https://www.faa.gov/
https://gazebosim.org/home
https://consortiq.com/uas-resources/drone-swarm-delivery-system
https://consortiq.com/uas-resources/drone-swarm-delivery-system
https://www.ngs.noaa.gov/PUBS_LIB/NGSRealTimeUserGuidelines.v2.1.pdf
https://www.ngs.noaa.gov/PUBS_LIB/NGSRealTimeUserGuidelines.v2.1.pdf
https://ardupilot.org/copter/docs/common-imu-notch-filtering.html
https://ardupilot.org/copter/docs/common-imu-notch-filtering.html
https://docs.px4.io/main/en/config_mc/filter_tuning.html
https://docs.px4.io/main/en/config_mc/filter_tuning.html

[46] Making search and rescue drone swarms a reality.
https://eng.vt.edu/magazine/stories/fall-2021/

drone-swarms.html, 2021. [Online; accessed 1-December-
2023].

[47] Matlab. https://www.mathworks.com/products/matlab.

html, 2024. [Online; accessed 1-June-2024].

[48] Mavlink. https://mavlink.io/en/, 2024. [Online; accessed
8-December-2024].

[49] Lianxiao Meng, Lin Yang, Wu Yang, and Long Zhang. A
survey of gnss spoofing and anti-spoofing technology. Remote
sensing, 2022.

[50] Eman Mousavinejad, Fuwen Yang, Qing-Long Han, Xiaohua
Ge, and Ljubo Vlacic. Distributed cyber attacks detection and
recovery mechanism for vehicle platooning. IEEE Transac-
tions on Intelligent Transportation Systems, 2019.

[51] Carlos Murguia and Justin Ruths. Cusum and chi-squared
attack detection of compromised sensors. In IEEE Conference
on Control Applications (CCA), 2016.

[52] Object avoidance using dijkstra’s with
bendyruler. https://ardupilot.org/copter/docs/

common-oa-dijkstrabendyruler.html/, 2024. [Online;
accessed 1-January-2025].

[53] Reza Olfati-Saber and Richard M Murray. Distributed coop-
erative control of multiple vehicle formations using structural
potential functions. IFAC Proceedings Volumes, 2002.

[54] Kartik A Pant, Li-Yu Lin, Jaehyeok Kim, Worawis Sribunma,
James M Goppert, and Inseok Hwang. Mixed-sense: A mixed
reality sensor emulation framework for test and evaluation of
uavs against false data injection attacks. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
2024.

[55] Paparazzi uas. https://github.com/paparazzi/

paparazzi/, 2024. [Online; accessed 1-June-2024].

[56] Amazon prime air prepares for drone deliveries.
https://www.aboutamazon.com/news/transportation/

amazon-prime-air-prepares-for-drone-deliveries,
2022. [Online; accessed 25-December-2023].

[57] Mark L Psiaki and Todd E Humphreys. Gnss spoofing and
detection. Proceedings of the IEEE, 2016.

[58] Px4. https://px4.io, 2024. [Online; accessed 1-June-2024].

[59] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Vic-
tor Kathan Sarker, Tuan Nguyen Gia, Hannu Tenhunen, Mon-
cef Gabbouj, Jenni Raitoharju, and Tomi Westerlund. Collabo-
rative multi-robot search and rescue: Planning, coordination,
perception, and active vision. IEEE Access, 2020.

[60] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman,
Alvaro Cardenas, and Zhiqiang Lin. SAVIOR: Securing au-
tonomous vehicles with robust physical invariants. In USENIX
Security, 2020.

[61] Remote identification of drones. https://www.faa.gov/uas/
getting_started/remote_id, 2024. [Online; accessed 01-
January-2025].

[62] Remote identification of unmanned aircraft. https:

//www.ecfr.gov/current/title-14/chapter-I/

subchapter-F/part-89, 2024. [Online; accessed 01-
January-2025].

[63] Benjamin Riviere, Wolfgang Hönig, Yisong Yue, and Soon-
Jo Chung. Glas: Global-to-local safe autonomy synthesis for
multi-robot motion planning with end-to-end learning. IEEE
Robotics and Automation Letters, 2020.

[64] Arnau Romero, Carmen Delgado, Lanfranco Zanzi, Raúl
Suárez, and Xavier Costa-Pérez. Cellular-enabled collabo-
rative robots planning and operations for search-and-rescue
scenarios. arXiv preprint arXiv:2403.09177, 2024.

[65] ros. https://www.ros.org/, 2024. [Online; accessed 1-June-
2024].

[66] Ivan F Salgado, Nicanor Quijano, Daniel J Fremont, and Al-
varo A Cardenas. Fuzzing malicious driving behavior to find
vulnerabilities in collision avoidance systems. In IEEE Eu-
ropean Symposium on Security and Privacy Workshops (Eu-
roS&PW), 2022.

[67] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner,
TK Satish Kumar, Sven Koenig, and Howie Choset. Primal:
Pathfinding via reinforcement and imitation multi-agent learn-
ing. IEEE Robotics and Automation Letters, 2019.

[68] Harshad Sathaye, Martin Strohmeier, Vincent Lenders, and
Aanjhan Ranganathan. An experimental study of GPS spoofing
and takeover attacks on UAVs. In USENIX Security, 2022.

[69] Savio Sciancalepore, Omar Adel Ibrahim, Gabriele Oligeri,
and Roberto Di Pietro. Picking a needle in a haystack: De-
tecting drones via network traffic analysis. arXiv preprint
arXiv:1901.03535, 2019.

[70] Seeing through forest with drone swarms.
https://ecoevocommunity.nature.com/posts/

seeing-through-forest-with-drone-swarms, 2022.
[Online; accessed 1-December-2023].

[71] Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian. Rlss:
real-time, decentralized, cooperative, networkless multi-robot
trajectory planning using linear spatial separations. Au-
tonomous Robots, 2023.

[72] Baskın Şenbaşlar, Pilar Luiz, Wolfgang Hönig, and Gaurav S
Sukhatme. Mrnav: Multi-robot aware planning and control
stack for collision and deadlock-free navigation in cluttered
environments. arXiv preprint arXiv:2308.13499, 2023.

[73] Ruoyu Song, Muslum Ozgur Ozmen, Hyungsub Kim, Ray-
mond Muller, Z Berkay Celik, and Antonio Bianchi. Discover-
ing adversarial driving maneuvers against autonomous vehicles.
In USENIX Security, 2023.

[74] Spoofing drone locations by manipulating remote id protocols
and communications. https://tinyurl.com/56w5wb95, 2024.
[Online; accessed 25-December-2023].

[75] Jie Su, Jianping He, Peng Cheng, and Jiming Chen. A stealthy
gps spoofing strategy for manipulating the trajectory of an
unmanned aerial vehicle. IFAC-PapersOnLine, 49(22):291–
296, 2016.

[76] swarmlab. https://github.com/lis-epfl/swarmlab, 2024.
[Online; accessed 1-June-2024].

USENIX Association 34th USENIX Security Symposium 3975

https://eng.vt.edu/magazine/stories/fall-2021/drone-swarms.html
https://eng.vt.edu/magazine/stories/fall-2021/drone-swarms.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://mavlink.io/en/
https://ardupilot.org/copter/docs/common-oa-dijkstrabendyruler.html/
https://ardupilot.org/copter/docs/common-oa-dijkstrabendyruler.html/
https://github.com/paparazzi/paparazzi/
https://github.com/paparazzi/paparazzi/
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://px4.io
https://www.faa.gov/uas/getting_started/remote_id
https://www.faa.gov/uas/getting_started/remote_id
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-89
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-89
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-89
https://www.ros.org/
https://ecoevocommunity.nature.com/posts/seeing-through-forest-with-drone-swarms
https://ecoevocommunity.nature.com/posts/seeing-through-forest-with-drone-swarms
https://tinyurl.com/56w5wb95
https://github.com/lis-epfl/swarmlab

[77] Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro.
Arid: Anonymous remote identification of unmanned aerial ve-
hicles. In Annual Computer Security Applications Conference,
2021.

[78] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giu-
lia Pedrielli, and Georgios Fainekos. Psy-taliro: A python
toolbox for search-based test generation for cyber-physical
systems. In FMICS, 2021.

[79] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Ras-
mussen, and Srdjan Capkun. On the requirements for suc-
cessful gps spoofing attacks. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2011.

[80] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh
Manocha. Reciprocal n-body collision avoidance. In Interna-
tional Symposium on Robotics Research (ISRR), 2011.

[81] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Tamás Ne-
pusz, Agoston E Eiben, and Tamás Vicsek. Optimized flocking
of autonomous drones in confined environments. Science
Robotics, 2018.

[82] Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety bar-
rier certificates for collisions-free multirobot systems. IEEE
Transactions on Robotics, 2017.

[83] Kacper Wardega, Roberto Tron, and Wenchao Li. Resilience of
multi-robot systems to physical masquerade attacks. In IEEE
S&P Workshops (SPW), 2019.

[84] Xrce. https://www.eprosima.com/index.php/

resources-all/whitepapers/xrce, 2024. [Online; ac-
cessed 1-June-2024].

[85] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu
Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, and Xue Lin.
Adversarial t-shirt! evading person detectors in a physical
world. In ECCV, 2020.

[86] Zhen Yang, Jun Ying, Junjie Shen, Yiheng Feng, Qi Alfred
Chen, Z Morley Mao, and Henry X Liu. Anomaly detection
against gps spoofing attacks on connected and autonomous ve-
hicles using learning from demonstration. IEEE Transactions
on Intelligent Transportation Systems, 2023.

[87] Yingao Elaine Yao, Pritam Dash, and Karthik Pattabiraman.
Swarmfuzz: Discovering gps spoofing attacks in drone swarms.
In IEEE/IFIP DSN, 2023.

[88] Doguhan Yeke, Kartik Anand Pant, M. Ozgur Ozmen, Hyung-
sub Kim, James M. Goppert, Inseok Hwang, Antonio Bianchi,
and Z. Berkay Celik. Automated Discovery of Semantic
Attacks in Multi-Robot Navigation Systems - Research Ar-
tifacts. https://doi.org/10.6084/m9.figshare.29260229,
2025. [Online; accessed 8-June-2025].

[89] William J Youden. Index for rating diagnostic tests. Cancer,
1950.

[90] Tian-Yu Zhang, Dan Ye, and Guang-Hong Yang. Ripple ef-
fect of cooperative attacks in multi-agent systems: Results on
minimum attack targets. Automatica, 2024.

Figure 8: A deadlock illustration on BendyRuler/Ardupilot.

Table 5: Raven’s performance on all target-victim pairs for
navigation delay attack with n={5,10} FDIs.

Target Victim Success Rate
0 1 Yes (Suboptimal, n=10)
0 2 No
1 0 Yes (Optimal, n=5)
1 2 Yes (Optimal, n=5)
2 0 Yes (Suboptimal, n=10)
2 1 No

A Evaluation Details

MRCA Algorithm Selection Process. We conducted a sys-
tematic literature review following a three-stage filtering pro-
cess. First, we searched for papers published between 2010
and 2024 using the keywords “multi-robot collision avoid-
ance”, “multi-agent path finding”, “multi-robot motion plan-
ning”, and “n-body collision avoidance”. We confined the
search to top-tier robotics venues (ICRA, IROS, RSS, RAL,
IJRR, T-RO, and Robotics Research) and retrieved 512 rel-
evant publications. Second, we reduced it to: (1) prioritize
collision avoidance over formation maintenance, (2) offer an
open-source implementation, (3) demonstrate performance
on real robots. Third, we divided the remaining papers into
two categories—classical and learning-based. From each cate-
gory, we identified the top three papers ranked by their impact.
Based on citation metrics and comparative performance from
existing literature [63], we chose ORCA from the classical
approaches and GLAS from the learning-based algorithms.

Supporting other MRCA Algorithms. Raven does not de-
pend on the internal details of velocity-based MRCA al-
gorithms, allowing it to be extended for any MRCA algo-
rithm. Specifically, Raven wraps four existing methods from
the MRCA algorithm codebase: init_MRCA() initializes an
MRCA instance with parameters such as initial positions,
goal positions, and obstacle positions; set_positions()

injects false data to simulate FDIA; get_positions()

retrieves updated positions at the next timestep; and
calculate_next_velocities() runs the MRCA algorithm
at each timestep. Thus, Raven neither introduces new func-
tions nor modifies internal MRCA components; it employs
these four wrappers to integrate with any MRCA algorithm.

3976 34th USENIX Security Symposium USENIX Association

https://www.eprosima.com/index.php/resources-all/whitepapers/xrce
https://www.eprosima.com/index.php/resources-all/whitepapers/xrce
https://doi.org/10.6084/m9.figshare.29260229

ROC Curve - Chi-Squared Detector

Figure 9: ROC curves for lowered thresholds for an effective GNSS spoofing and insider/Remote ID attack scenario.

x
x

x

x
x

x

Source

DestinationObstacle 1

Obstacle 2
t1 t2

Robot 1

Robot 3

Robot 2

Figure 10: Attacking multiple victim robots on ORCA.

Figure 11: Real-world experiment setup.

Supporting New Attacks. Our literature review revealed five
primary attacks in multi-robot systems, constituting funda-
mental adversarial strategies. However, Raven is easily ex-
tendable for developers to add new attacks by simply defining
them as STL-formulas, similar to those in Table 1.

Attack Reproducibility with Imprecise Spoofing. We tested
the reproducibility with imprecise spoofing. Initially, we iden-
tified a “navigation delay attack” using one false data injection
with parameters: time = 5.9 s, x = -0.38, y = 3.39. We then
altered the position displacement by sampling from [-1,+1]
and ran the experiment 5 times. The attack was successful in
3 of 5 trials. In failed cases, the position displacement was
insufficient to induce a deadlock position for the victim robot.

Porting Raven to Commercial MRCA Algorithms. Com-
mercial MRCA algorithms are not available for public use, so
our experiments utilize publicly accessible MRCA algorithms.
Our analysis focused on two MRCA algorithms, ORCA and
GLAS, as representative cases. Raven does not rely on any

Figure 12: Deadlock attack sequence. (a) The initial state,
where robots move toward their targets. (b) The attacker inter-
cepts the victim, forcing it onto a new path where it becomes
permanently stuck due to its collision avoidance constraints.

specific design features of these algorithms. Therefore, Raven
can easily be extended to the commercial MRCA algorithms.
Attacks on Open-Source Autopilot Frameworks. We con-
ducted an experiment using Bendyruler [52], the object avoid-
ance algorithm in Ardupilot [7], with OA_TYPE=1. Our ex-
periment shows that the current version of the algorithm is
vulnerable to deadlock attacks. We set up the environment
by introducing exclusion geofences and real obstacles. In our
SITL setup, the robot detects obstacles via LiDAR. Figure 8
displays a QGroundControl map where the robot becomes
trapped by an obstacle. The robot exhibits negligible move-
ment and cannot change its position significantly for more
than 10 seconds. These results show that object avoidance
algorithms in popular controllers may fail under FDIAs.
Different Environments. We conduct experiments in differ-
ent environments (Env1, Env2, Env3, and Env4). Each envi-
ronment contains distinct obstacle positions and shapes to
capture various testing conditions. The start and goal posi-
tions of robots also differ. Although three robots are shown
for illustration, Raven can operate with any number of robots.
Case Study 3 (Fig. 10) - Attacking Multiple Victims. In addi-
tion to attacking a single victim, Raven can also be extended
to attack multiple victims. In this case study, we demon-
strate how one target robot can immobilize two victim robots
through a deadlock attack demonstrated in the Python simula-
tor. We conducted tests using n=10 FDIs. Figure 10 shows the
attack’s effect on ORCA. The target robot (Robot 2) success-

USENIX Association 34th USENIX Security Symposium 3977

fully disrupted two victim robots, placing them in separate
deadlock positions. Initially, the target robot navigates to the
left, pushing victim Robot 1 into Obstacle 1 at t1. Then, at
t2, the target robot moves right, causing victim Robot 3 to
become trapped in a deadlock. The victims (Robot 1 and
Robot 3) consider moving towards the target, but MRCA al-
gorithm prevents a collision, resulting in a deadlock position.
Deadlock Attack Illustration in PX4/Gazebo Simulation.
Figure 12 demonstrates the attack in a PX4/Gazebo simula-
tion. The victim robot (Robot 1) steers left to avoid a collision
with the target robot (Robot 2). From this new position, Robot
1 attempts to move toward its goal but is obstructed by Robot
2. The robot eventually becomes stuck because its collision
avoidance constraints prevent it from navigating to the goal.
Statistical Detectors on Insiders and Remote ID Attacks.
Insiders can precisely inject false data into messages ex-
changed between robots. Similarly, exploiting the absence
of encryption and authentication in FAA Remote ID stan-
dards [61], Remote ID attackers can craft equally precise
false data by specifying target robot IDs and exact false coor-
dinates. Therefore, from the perspective of a victim evaluating
incoming position messages, the core anomaly introduced by
either attack type appears indistinguishable to the victim.

We adapted Chi-squared and CUSUM detectors for in-
sider and Remote ID attackers. Initially designed for GNSS
anomaly detection, these detectors can also handle anomalies
from incoming position messages. For these attack vectors,
each robot evaluates incoming position messages, not raw
GNSS coordinates. Each robot records a received position as
its “previous state” to predict a neighbor’s subsequent location.
From the next message, the residual (i.e., difference between
predicted and actual positions) is computed. Residuals are
flagged as anomalous if they exceed predefined thresholds.

To illustrate that Raven can generate stealthy messages, in
a three-robot navigation delay attack, an adversary conducts
n=11 FDIs. Figure 13 shows incoming data from the “target
robot” conducting FDIAs, where each robot uses both Chi-
squared and CUSUM detectors on the incoming data. The
adversary carefully crafted false messages (marked by red
lines in Figure 13), causing small deviations on the victim and
resulting in residuals below detection thresholds (i.e., no flags
are triggered at any time instance for both detectors). To cal-
culate the optimal threshold, we utilized Youden’s index [89],
which maximizes the difference between the TPR and FPR
rates. The Chi-squared detector achieved optimal performance
at a threshold of 0.5819, with Precision 0.50, Recall 0.41, FPR
0.05, F1 0.44, J 0.34. The CUSUM detector achieved optimal
performance at a threshold of 0.4368, with Precision 0.16,
Recall 0.20, FPR 0.14, F1 0.18, J 0.05. Compared to sensor
attacks, detection rates are slightly lower for insider/Remote
ID attacks. There are three main reasons. (1) EKF applies ad-
ditional filtering mechanisms to exclude anomalies in sensor
data. (2) EKF uses nonlinear modeling for state prediction,
while insider modeling relies on a simplified version. (3) Dif-

Figure 13: Detector output for an insider/Remote ID attack.

ferences in key parameters (e.g., message frequency and noise
levels) vary the resulting data. Consequently, our experimental
results reveal two insights: (1) Slight position displacements
to evade the Chi-squared detector necessitate more FDIs for
a successful and stealthy attack. (2) Intermittent attacks (i.e.,
discrete attacks) can help circumvent window-based CUSUM
detectors, as such attacks do not continuously inject false data.

B Simulator Details

We explored open-source contributions and discovered the
Distributed Optimal Reciprocal Collision Avoidance (d-
ORCA) [24] framework. Although d-ORCA implements
ORCA [80] and deploys it to multi-robots, its software com-
ponents are outdated. It operates on Ubuntu 16, Robot Op-
erating System (ROS) Kinetic, and Gazebo 7.13. However,
ROS [65] has transitioned to ROS2, and Gazebo [28] is now
in version 11, each version bringing significant improvements
such as enhanced sensor plugins and real-time communication
that affect the performance and precision of the experiments.
Furthermore, d-ORCA does not support any other MRCA
algorithms. We tried upgrading its components, yet it was
infeasible due to its design for specific software versions.

We developed our simulator, which comprises five key com-
ponents. First, Gazebo [28] creates the world and spawns the
models, including robots and obstacles. Gazebo then sends
raw sensor data, such as GNSS and accelerometer readings,
to robots via its sensor plugins. To enable communication
between components, XRCE [84] creates real-time low-level
channels. Next, PX4 [58] subscribes to these channels to re-
ceive sensor measurements. Note that we deploy separate
PX4 Autopilots to each robot to create a distributed system,
aligning it with real-world scenarios. Following that, we im-
plement the MRCA algorithm in the robot and subscribe to
all other robots’ position and velocity channels. MRCA al-
gorithm processes all these measurements and calculates the
target waypoint or velocity for the robot at the next time step.
Then, it sends the new waypoint/velocity to PX4 as a com-
mand to be applied by the PX4 offboard component. Gazebo
internally receives this actuator command and applies it to the
robot. We demonstrate the architecture of our high-fidelity
simulation setup on our project webpage.

3978 34th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Threat Model
	Motivation and Challenges
	Motivating Example
	Design Challenges

	RAVEN Design
	Attack Goal Formalization
	MRCA Algorithm Profiling
	Adversarial Input Generation
	Robustness-Guided Attack Search

	Implementation
	Evaluation
	Effectiveness (RQ1)
	Analysis of Different Parameters (RQ2)
	Analysis of Stealthiness (RQ3)
	Root Cause Analysis (RQ4)
	System-level Security Issues.
	Algorithmic Design Flaws

	Baseline Comparisons (RQ5)
	Time Efficiency (RQ6)

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgments
	Ethics Considerations
	Open Science
	Evaluation Details
	Simulator Details

